首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are very few experimental studies identifying hydrological pathways within rain forest slopes. Such knowledge is, however, necessary to understand why forest disturbance affects rainfall–riverflow response and nutrient migration. This study examines flow pathways within lowland rain forest slopes comprising Udults of the Ultisol soil order. Experimentation was conducted on four SE Asian hillslope units (each 5 × 5 m in plan) in the Bukit Timah catchment (Singapore Island), and in the W8S5 catchment (Sabah, Borneo Island). The flow pathways were identified by artificial tracer experiments. We evaluated how well hydrometric calculations based on tensiometry and permeametry measurements predicted the tracer patterns. The tracer work indicated much faster subsurface flows at Bukit Timah than W8S5 for the storms studied. Some explanation of the greater subsurface waterflows at Bukit Timah in comparison to W8S5 is afforded by the less steep moisture release curves which maintain hydraulic conductivity as the soil dries. Vertical flow of the tracer through the upper 1 m of soil predominated (>90 per cent of percolation) in the Bukit Timah slopes. In some contrast, a major component (approximately 60 per cent) of the tracer percolation was directed laterally within the W8S5 slopes. The flow vectors calculated using the hydrometric methods did, however, grossly under‐estimate the degree of lateral deflection of waterflow generated at W8S5 and to a lesser extent over‐estimated it at Bukit Timah. In part, these errors may relate to the inability of traditional hydrometric techniques to fully characterize the effect of the large and small ‘natural soil pipes’ present within both catchments. In conclusion, the study indicates that marked variations in flow vectors exist within the Udult great group of SE Asian soils and hydrometric calculations may be poor predictors of these dominant pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Grout curtains are vertical grout walls installed in the ground. In karst terrains, their construction is primarily connected with dams and reservoirs. Their main role is to increase water tightness and to prevent progressive erosion, blocking possible seepage paths along karst fissures and conduits. In this article, changes in the behaviour of the groundwater level (GWL) and the water temperature in nine deep piezometers, which were caused by the construction of a grout curtain at the ?ale Reservoir on the Cetina River (Croatia), were analysed. The total length of the grout curtain is 3966 m. It spreads 120 m below the dam. The most analysed data are from the period after the dam had been built. Only few data and figures concern the comparison between pre‐ and post‐dam periods. The hourly data of the GWL and the water temperature were analysed for the period between 1 September 2008 at 02:00 h to 31 December 2009 at 23:00 h (11 687 h total) in six deep piezometers (marked in the text and figures as 1, 2, 3, 4, 5 and 6). For three piezometers (marked in the text and figures as A, B and C), some discontinuous measurements of the GWL and the water temperature were available for analysis. The construction of the grout curtain made strong, sudden and possibly dangerous changes to the characteristics of the aquifer and the circulation of groundwater in the local area. Special attention is paid to analyses of the behaviour of the hourly GWL data measured in the piezometers pairs (two neighbouring piezometers, one inside and the other outside of the grout curtain). During more than 80% of the analysed period, the GWL was higher in the piezometer inside the grout curtain than the one outside of it. The intensity and range of the dynamics of GWL was higher in piezometer outside the grout curtain than the inside ones. After the construction of the grout curtain, the maximum measured hydrostatic pressure on some parts of the grout curtain was approximately 40 m. It changes quickly in both time and direction. The water temperature was found to be similar in all of the measured piezometers, and it varies between 10.2 and 15.7 °C with an average value of 12.7 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
根据结构振动理论,分析了振动压实机械与被压土体的相互作用机理,研究了碎石土振动压实动态监测的理论依据,建立了一套适用于加速度监测仪的振动压实动态监测数据采集系统.在大量室内试验数据的基础上,研究了振动压实过程中加速度电信号响应随碎石土密实度的变化规律,发现二者具有显著的线性相关性.研究结果为实现快速有效的碎石土路基密实度实时动态监测提供了理论依据和工程指导.  相似文献   

4.
5.
Measurements of magnetic susceptibility of soils, reflecting magnetic enhancement of topsoils due to atmospherically deposited magnetic particles of industrial origin, are used recently in studies dealing with outlining polluted areas, as well as with approximate determination of soil contamination with heavy metals. One of the natural limitations of this method is magnetic enhancement of soils caused by weathering magnetically rich parent rock material. In this study we compare magnetic properties of soils from regions with different geological and environmental settings. Four areas in the Czech Republic and Austria were investigated, representing both magnetically rich and poor geology, as well as point-like and diffuse pollution sources. Topsoil and subsoil samples were investigated and the effect of geology and pollution was examined. Magnetic data including mass and volume magnetic susceptibility, frequency-dependent susceptibility, and main magnetic characteristics such as coercivity (Hc and Hcr) and magnetization (Ms and Mrs) parameters are compared with heavy metal contents. The aim of the paper is to assess the applicability of soil magnetometry under different geological-environmental conditions in terms of magnetic discrimination of dominant lithogenic/anthropogenic contributions to soil magnetic signature. Our results suggest that lithology represents the primary effect on soil magnetic properties. However, in case of significant atmospheric deposition of anthropogenic particles, this contribution can be clearly recognized, independent of the type of pollution source (point-like or diffuse), and discriminated from the lithogenic one. Different soil types apparently play no role. Possible effects of climate were not investigated in this study.  相似文献   

6.
The rainfall received by a small plot of tropical deciduous forest on sand dunes in Veracruz, Mexico, was partitioned into stemflow and throughfall components to determine whether funnelling by stemflow could reduce soil leaching by transmitting large volumes of water through vertical soil pathways beneath each stem. Although soil infiltration capacities were high, only a very small proportion of incoming rainfall was funnelled by canopy stems. This is attributed to the widely-branched morphology of mature trees. Smaller trees and shrubs were more effective funnellers of rainfall, and a crude estimate of the magnitude of stemflow in the understorey stratum in one rain event suggested a contribution approximately ten times that of canopy stemflow. However, even if augmented by the understorey stratum in this way, total stemflow is unlikely to have exceeded 10 per cent of gross precipitation, implying that it does not represent an important leaching-avoidance mechanism in this forest.  相似文献   

7.
Well-developed, clay-rich soils dominated by interstratified kaolinite-smectite are found on the uplifted coral reef terraces on the island of Barbados. The reef limestone is unlikely to have been the soil parent material however, because it is 98 per cent CaCO3 and geomorphic evidence argues against the 20 m of reef solution required to produce the soils by this process. The mineralogy of the sand, silt, and clay fractions of the soils, and trace element geochemistry, suggest that aeolian materials carried on the trade winds from Africa, volcanic ash from the island of St. Vincent, and quartz from Tertiary bedrock on the island itself are the parent materials for the soils.  相似文献   

8.
An experiment set up in a highland area of northern Tanzania is described. The influence of skewness and great variability of throughfall data is illustrated. For heavy storms, the large standard errors make interception estimates unreliable. The techniques of analysis adopted have a considerable influence on throughfall and interception estimates.  相似文献   

9.
The levels of variance associated with measuring the infiltration process and modelling it by means of a regression model are compared to see which approach yields the best results in terms of effort and accuracy. A nested sampling scheme has been used in the three major physiographic units of central Guyana, South America: ‘White Sands’; (Haplic and Ferralic Arenosols), ‘Brown Sands’ (Haplic Ferrasols) and ‘Laterite’ (Xanthic and Dystric Leptosols). Cluster analysis yields three sample groups that reflect the sharp landscape boundaries between the units. Multiple regression analysis shows that each unit has a different combination of soil properties that explains the variance in final infiltration rate and sorptivity satisfactorily. Nested analysis of variance indicates that clear spatial patterns with distances of variation of several hundred metres exist for final infiltration rate in White Sands and Laterite. Infiltration rate in Brown Sands and sorptivity in all units have large short-distance variabilities and high ‘noise’ levels. The correlated independent variables behave accordingly. For the majority of the soil properties, sampling at distances of 100 to 200 m results in variance levels of more than 80 per cent of the total variance, which indicates that only a detailed investigation can assess spatial variation in soil hydrological behaviour. The use of simple soil properties to predict infiltration is only possible in a very general sense and with the acceptance of high variance levels.  相似文献   

10.
PAH concentrations of 61 surface soil samples collected from the Yellow River Delta (YRD), China were measured to determine occurrence levels, sources, and potential toxicological significance of PAHs. The total concentrations of ∑PAHs ranged from 27 to 753 ng/g d.w., with a mean of 118 ± 132 ng/g. The highest concentrations was found in the mid-southern part of the YRD (753 ng/g), which was associated with the oil exploration. The ratios indicated that the PAHs throughout the YRD were mostly of pyrogenic origin; while various sites in mid-southern part in the region were derived mainly from the petrogenic sources. Multivariate statistical analyses supported that the PAHs in surface soils of the YRD were principally from the coal and biomass combustion, petroleum spills, and/or vehicular emissions. The toxic assessment suggested that the PAHs in soils were at low potential of ecotoxicological contamination level for the YRD.  相似文献   

11.
12.
This paper reports on the flow regimes of underground seepages in three tower-karst outcrops and in the Setul Boundary Range, West Malaysia. Groundwater movement in the tower-karst hills, which comprise very pure, massive marbles, is confined to vertical and subvertical joints. Although flow is primarily diffuse and the discharges of the majority of seepages correlate most closely with rainfall in antecedent periods of 1–16 days or more, some stormflow occurs along conduits in the upper parts of these aquifers. Many of these conduits appear to peter out at depth into tight rock fractures, thereby forming funnel-shaped underground reservoirs which serve to moderate discharge variations. In contrast, the limestones of the Setul Boundary Range are less pure and retain much of their original bedding. The presence of near-horizontal bedding plane fractures favours lateral groundwater movement and the development of integrated drainage networks within the rock. Compared with the tower-karst caves, seepage rates are generally higher and more responsive to short-term variations in rainfall. The marked difference in topography between the tower-karst hills and the Setul Boundary Range is largely attributable to the contrasted geohydrological properties of the limestones.  相似文献   

13.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
As an elite region of human being’s residence and development, the oasis in arid areas fosters more than 90% of population, produces more than 95% of the industrial and agricultural value, although its acreage takes only 3%―5% of total arid areas[1,2]. In the last decades, the oasis exploitation, harnessing and pro-tecting regional eco-environment have been becomingone of key study objects in the sustainable develop-ment[3―7], as the global environment changes and re-gional environment becom…  相似文献   

15.
The properties of woody debris(WD) vary across different forests under various soil conditions.Owing to the relatively shallow and low amounts of soils on karst terrains, it is necessary to determine the WD carbon inventory of karst forests. In this study, we recorded WD with a basal diameter for standing snags and the largeend diameter for fallen logs of ≥ 1 cm. The carbon density of WD in a secondary karst mixed evergreen and deciduous broad-leaved forest that had been clear-cut 55 years ago in southwestern China were inventoried in a 2 ha plot. Woody debris carbon density calculated using specific gravity and carbon concentration was 4.07 Mg C ha^-1. Woody debris with diameters ≥ 10 cm(coarse WD) constituted 53.8% of total carbon storage whereas WD < 10 cm in diameters(fine WD) accounted for more pieces of WD(89.9%).Lithocarpus confinis contributed the most WD carbon(26.5%). Intermediate decayed WD was relatively more abundant, but WD with final decay contributed the least to the total pieces of WD(6.7%). The contribution of WD to carbon storage of karst forest was low compared to other forests worldwide. Significant positive correlations were found between WD carbon and biodiversity(R^2= 0.035,p < 0.01) and elevation(R^2= 0.047, p < 0.01) and negative correlations was found in outcrop coverage(R^2= 0.034, p <0.01). Further studies are needed to elucidate the ecological functions of WD to better understand their roles in maintaining biodiversity, enhancing productivity, and controlling vegetation degradation in karst forest ecosystems.  相似文献   

16.
In the linear seismic design of buildings, the (deterministic) substructure method is a customary and efficient approach. However, the existence of spatial variability in the parameters of the mechanical model of the soil, as well as parametric errors, calls for the use of probabilistic approaches in order to provide a reliable design of the structure. The construction of probabilistic models of the soil impedance matrix provides a natural path to such approaches within the context of the substructure method. Two main techniques are described in this paper: a parametric one, typically using the stochastic finite element method, and a nonparametric one, which was introduced more recently. The latter is explored more specifically, and the possibilities it offers in terms of seismic design are presented. In particular, it is shown that it allows for the estimation of quantiles of the quantities of interest, rather than confidence intervals, which lead to highly conservative design. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In order to discuss the values and daily variation characteristics of heat storage fluxes in a tropical seasonal rain forest in Xishuangbanna, the sensible and latent heat storage flux within air column, canopy heat storage flux, energy storage by photosynthesis and ground heat storage above the soil heat flux plate, as well as the ratios of these heat storage fluxes to the net radiation in the cool-dry, hot-dry and rainy season were compared and analyzed based on the observation data of carbon fluxes, meteorological factors and biomass within this tropical seasonal rain forest from January 2003 to December 2004. The findings showed that heat storage terms ranged significantly in the daytime and weakly in the nighttime, and the absolute values of sensible and latent heat storage fluxes were obviously greater than other heat storage terms in all seasons. In addition, the absolute values of total heat storage fluxes reached the peak in the hot-dry season, then were higher in the rainy season, and reached the minimum in the cool-dry season. The ratios of heat storage fluxes to net radiation generally decreased with time in the daytime, moreover, the sensible and latent heat storage dominated a considerable fraction of net radiation, while other heat storage contents occupied a smaller fraction of the net radiation and the peak value was not above 3.5%. In the daytime, the ratios of the total heat storage to net radiation were greater and differences in these ratios were distinct among seasons before 12:00, and then they became lower and differences were small among seasons after 12:00. The energy closure was improved when the storage terms were considered in the energy balance, which indicated that heat storage terms should not been neglected. The energy closure of tropical seasonal rain forest was not very well due to effects of many factors. The results would help us to further understand energy transfer and mass exchange between tropical forest and atmosphere. Moreover, they would supply a research basis for studying energy closure at other places.  相似文献   

18.
Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Although these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species‐rich forests is not well known. Many hydrological applications, however, require at least a rough estimate of stemflow volumes based on the characteristics of a forest stand. The need for robust predictions of stemflow motivated us to investigate the relationships between tree characteristics and stemflow volumes in a species‐rich tropical forest located in central Panama. Based on a sampling setup consisting of ten rainfall collectors, 300 throughfall samplers and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. Firstly, stemflow represents a minor hydrological component in the studied 1‐ha forest patch (1.0% of cumulated rainfall). Secondly, in the studied species‐rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Thirdly, predicting stemflow in species‐rich forests based on tree parameters is a difficult task. Although our best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species‐rich forests corroborates this finding. Based on these results and considering that for most hydrological applications, stemflow is only one parameter among others to estimate, we advocate using the base model, i.e. the mean of the stemflow data, to quantify stemflow volumes for a given study area. Studies in species‐rich forests that wish to obtain predictions of stemflow based on tree parameters probably need to conduct a much more extensive sampling than currently implemented by most studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper discusses the relationship between the differentiation of ferruginous accumulations and the variable water saturation of footslope soil patterns. An analysis of the slope morphology of a typical hill in the forest zone of southern Cameroon and a seasonal survey of the levels of groundwaters, springs and rivers were considered in relation to the petrology of different soil patterns. The study site is a tabular hillock whose slopes present a progressive development from steep to gentle slopes. The variable residence time of water within the soil, creating an alternation of reducing and oxidizing conditions, affects soil chemistry, structure and lateral extension of the soil patterns. The ferruginous soil patterns, being formed on the footslopes, gradually increase in extent with decreasing slope angle and the relative rise of the groundwater level. The steep footslopes, where groundwater has a shorter residence time, show a soft mottled clay pattern, restricted to the bottom part of the slope. The moderate footslopes exhibit a deep permanent and a temporary perched groundwater table. The latter, with its regular capillary fringe, contributes to more reducing conditions within isolated domains in the soil patterns, and thus to the alternation with oxidizing conditions, generating a continuous hard soil pattern (massive carapace). The more gently dipping footslopes exhibit groundwater levels near the surface and also a significant amplitude of groundwater fluctuation. Iron, previously accumulated in moderate footslope patterns, is reduced, remobilized, and leached. The soil patterns formed develop into a variegated carapace, more extended along the slope, containing less iron, but nevertheless more hardened, due to the important fluctuations of the groundwater table. These patterns are limited to the zone of groundwater fluctuation and deteriorate as the water fluctuation zone recedes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号