首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A series of experiments designed to study the separation of flow components from two large undisturbed cores under steady-state rainfall (downward) and return (upward) flows under near-saturated conditions is summarized. The experiments were conducted on soil columns collected from Lancaster University and the Slapton Wood catchment, Devon. The use of the relatively conservative tracers, potassium bromide, o-(trifluoromethyl)benzoic acid and 2,6-difluorobenzoic acid and a combination of application rates made it possible to quantify the different sources of water contributing to the discharge hydrographs. There is significant retention of tracer within the cores, despite the application of several pore volumes of water. The use of steady flow conditions allowed the determination of dispersion coefficients, dispersivity and proportion of ‘mobile’ water content parameters of the advection–dispersion equation. It was found that there were significant differences between the dispersivities at different flow-rates under upward and downward flux conditions and that in the undisturbed cores studied here the apparent proportions of mobile pore water ranged between 0.33 and 1.0, with an apparently complex relationship to flux rate. Prediction of transport in undisturbed soil remains problematic and tracer experiments will continue to be needed to provide a fundamental understanding of the complex flow processes involved.  相似文献   

2.
This article describes laboratory batch sorption and column transport experiments that were conducted using heterogeneous alluvial sediments with a wide physical characteristic from wells, located between Lake Mogan and Lake Eymir, Gölbaşı, Ankara. The batch sorption experiment was conducted in two separate systems, that is, single and multicomponents. Single batch experiment was performed to determine equilibrium condition between the heavy metal ions and the soil adsorption sites. The sorption isotherms data from multibatch experiments were used to calculate the sorption parameters. Single batch experiment indicated that equilibrium was attained within 9 days from the start of the sorption test. As a result of multicomponents batch experiments, for Zn and Mn, the sorption process was well described by the Freundlich or Langmuir isotherm model, whereas sorption of Cu was better described by the linear isotherm model. The Kd of Cu were found to be highest in soil 1 (32550.350 L kg−1) and lowest in soil 5 (18170.76 L kg−1). The maximum and minimum sorption capacity values for Zn were found to be in soil 1 (10985.148 mg kg−1) and in soil 2 (8597.14 mg kg−1) units, respectively. [Correction added after online publication 15 July, 2010: In the preceding sentence, the words “minimum” and “maximum” were initially switched.] Similarly, soil 1 (7587.391 mg kg−1) and soil 5 (4908.695 mg kg−1) units provided the maximum and minimum values for Mn. In the column experiments, flow and tracer transport was studied under saturated conditions using conservative tracer to determine the transport parameters. Transport parameter values were obtained by curve-fitting using the nonlinear least-squares optimization code CXTFIT. Results of the column experiments indicated that the dispersivity values obtained for soil samples were in the range of 0.024 to 1.13 cm.  相似文献   

3.
Transport and Biological Fate of Toluene in Low-Permeability Soils   总被引:1,自引:0,他引:1  
The effect of simultaneous sorption, diffusion, and biodegradation on the fate and transport of toluene in low-permeability soil formations was examined. A transport model accounting for vapor and liquid sorption, vapor diffusions, and first-order biodegradation was developed to describe the movement of volatile solute in unsaturated soils. Modeling studies were followed with laboratory batch and column studies on fine-grained soil samples obtained from a gasoline-contaminated site. Batch experiments yielded the sorption and diffusion coefficients for generating theoretical solute transport profiles. Column studies were conducted to examine toluene sorption, diffusion, and biodegradation under aerobic and denitrifying conditions. Results from the column studies indicated that vapor sorption onto the soil was minimal due to the high moisture content of the soil. Comparison of model predictions with experimental results indicated that the SASK model, which is based on the resistivity theory, provided a more accurate prediction of the vapor phase tortuosity than the frequently used Millington-Quirk equation. Laboratory results of toluene concentration profiles matched well with the model predictions and yielded degradation rates comparable to those obtained in the field. Column studies, examining toluene biodegradation under aerobic and denitrifying conditions in low-permeability soils, indicated that the presence of excess nitrate in aerobic environments yielded higher solute degradation rates than those observed under exclusively aerobic systems.  相似文献   

4.
Two tracer experiments have been carried out at an enclosed catchment in southern Norway. The catchment was brought to steady state with respect to rainfall and runoff prior to the tracer addition. A known concentration of lithium bromide was then added to the rainfall for the duration of each event. The tight control on tracer concentration and rainfall amount enabled assessment of the contribution of old and new water to runoff, the dominant flow pathways and soil water residence times during a storm event. A significant volume of ‘old’ water contributes to runoff despite the hydrologically responsive nature of the catchment and several hours of tracer injected rainfall are required before ‘new’ water becomes the dominant runoff source. After 34 h of tracer injection, ‘new’ water apparently contributes c. 83% to instantaneous flow and c. 55% of the total tracer input to the catchment has been lost in runoff. Recovery of the tracer from soil water indicates that the organic soil surface layer is the dominant flow pathway for rainwater through the catchment and that a significant pathway also exists at the soil–bedrock interface. New water is retained in deep pockets of soil for several days. Assessment of the conservative behaviour of the tracer suggests that 10–14% of the input Br is retained in the soil and the tracer is not conservative. Laboratory experiments indicate that sorption of Br to organic soil is the likely mechanism of retention. This process is probably concentration dependent and will have occurred predominantly during the initial period of tracer application. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Headcut formation and migration was sometimes mistaken as the result of overland flow, without realizing that the headcut was formed and being influenced by flow through soil pipes into the headcut. To determine the effects of the soil pipe and flow through a soil pipe on headcut migration in loessic soils, laboratory experiments were conducted under free drainage conditions and conditions of a perched water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 and 1 l min−1 at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response was the formation of a headcut that extended in depth until an equilibrium scour hole was established, at which time the headcut migrated upslope. Pipeflow caused erosion inside the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes and greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe, in addition to pipeflow, increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 min compared with free drainage conditions. This study confirmed that pipeflow dramatically accelerates headcut migration, especially under conditions of shallow perched water tables, and highlights the importance of understanding these processes in headcut migration processes. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Retardation of organic contaminants in natural fractures in chalk   总被引:1,自引:0,他引:1  
Transport of a conservative compound and two sorbing compounds through fractured chalk was studied using flow-through columns consisting of chalk cores with a single subvertical fracture. Two types of chalk matrix were compared, an oxidized white chalk with low organic carbon content (0.2%), and a gray chalk with a higher organic carbon content (1.3%). Initial rapid breakthrough followed by a delayed approach to a relative concentration of unity for the conservative compound (2,6–difluorobenzoic acid [DFBA]) was clear evidence for diffusion into the porous chalk matrix. Matrix diffusion of DFBA was apparently much greater in the gray chalk columns than in the white chalk columns. Breakthrough curves (BTCs) of the sorbing compounds (2,4,6–tri-bromophenol [TBP] and ametryn [AME]) were retarded in all cases as compared to the conservative compound. Sorption retardation was far greater in the gray chalk as compared with the white chalk, in good agreement with results from batch sorption experiments. BTCs for the conservative compound were relatively nonhysteretic for both white and gray chalk columns. In contrast, BTCs for the sorbing compounds were hysteretic in all cases, demonstrating that sorption was not at equilibrium before desorp-tion began. These experiments suggest that on a field scale, transport of contaminants through fractures in chalk and other fractured porous media will be attenuated by diffusion and sorption into the matrix.  相似文献   

7.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Conflicting sorption coefficients for ortho‐phenylphenol (OPP) have been reported in the literatures, which resulted in the conflicting assessments on OPP mobility in soil. To ascertain the sorption coefficient of OPP, batch experiments were performed based on OECD guideline 106, using three types of soils. Headspace solid‐phase microextraction (HS‐SPME) and GC‐MS were applied to the determination of OPP concentration in the liquid phase. The sorption isotherms obtained for all three soils under equilibrium conditions were described well, assuming linear sorption. The organic carbon normalized distribution coefficients (Koc) ranged from 894 to 1703 L kg?1, which suggested that OPP is moderately mobile in soil. The results also showed that the Koc value of OPP can be predicted precisely from Kow, whereas it was underestimated by one order of magnitude when water solubility is used.  相似文献   

9.
Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system’s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme.  相似文献   

10.
The objective of this research was to study the sorption and transport of bacteriophage MS-2 (a bacterial virus) in saturated sediments under the effect of salinity and soluble organic matter (SOM). One-dimensional column experiments were conducted on washed high-purity silica sand and sandy soil. In sand column tests, increasing salinity showed distinct effect on enhancing MS-2 sorption. However, SOM decreased MS-2 sorption. Using a two-site reversible-irreversible sorption model and the double layer theory, we explained that pore-water salinity potentially compressed the theoretical thickness of double layers of MS-2 and sand, and thus increased sorption on reversible sorption sites. On irreversible sorption sites, increasing salinity reversed charges of some sand particles from negative to positive, and thus converted reversible sorption sites into irreversible sites and enhanced sorption of MS-2. SOM was able to expand the double layer thickness on reversible sites and competed with MS-2 for the same binding place on irreversible sites. In sandy soil column tests, the bonded and dissolved (natural) soil organic matters suppressed the effects of pore-water salinity and added SOM and significantly reduced MS-2 adsorption. This was explained that the bonded soil organic matter occupied a great portion of sorption sites and significantly reduced sorption sites for MS-2. In addition, the dissolved soil organic matter potentially expanded the double layer thickness of MS-2 and sandy soil on reversible sorption sites and competed with MS-2 for the same binding place.  相似文献   

11.
Peat soils are heterogeneous, anisotropic porous media. Compared to mineral soils, there is still limited understanding of physical and solute transport properties of fen peat soils. In this study, we aimed to explore the effect of soil anisotropy on solute transport in degraded fen peat. Undisturbed soil cores, taken in vertical and horizontal direction, were collected from one drained and one restored fen peatland both in a comparable state of soil degradation. Saturated hydraulic conductivity (K s) and chemical properties of peat were determined for all soil cores. Miscible displacement experiments were conducted under saturated steady state conditions using potassium bromide as a conservative tracer. The results showed that (1) the K s in vertical direction (K sv) was significantly higher than that in horizontal direction (Ksh), indicating that K s of degraded fen peat behaves anisotropically; (2) pronounced preferential flow occurred in vertical direction with a higher immobile water fraction and a higher pore water velocity; (3) the 5% arrival time (a proxy for the strength of preferential flow) was affected by soil anisotropy as well as study site. A strong correlation was found between 5% arrival time and dispersivity, K s and mobile water fraction; (4) phosphate release was observed from drained peat only. The impact of soil heterogeneity on phosphate leaching was more pronounced than soil anisotropy. The soil core with the strongest preferential flow released the highest amount of phosphate. We conclude that soil anisotropy is crucial in peatland hydrology but additional research is required to fully understand anisotropy effects on solute transport.  相似文献   

12.
Jos C. van Dam 《水文研究》2000,14(6):1101-1117
Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two‐domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute transport. This paper presents a model concept that uses the clay shrinkage characteristics to derive crack volume and crack depth under transient field conditions. The concept has been developed to simulate field average behaviour of a field with cracks, rather than flow and transport at a small plot. Water flow and solute transport are described with basic physics, which allow process and scenario analysis. The model concept is part of the more general agrohydrological model SWAP, and is applied to a field experiment on a cracked clay soil, at which water flow and bromide transport were measured during 572 days. A single domain model was not able to mimic the field‐average water flow and solute transport. Incorporation of the crack concept considerably improved the simulation of water content and bromide leaching to the groundwater. Still deviations existed between the measured and simulated bromide concentration profiles. The model did not reproduce the observed bromide retardation in the top layer and the high bromide dispersion resulting from water infiltration at various soil depths. A sensitivity analysis showed that the amounts of bromide leached were especially sensitive to the saturated hydraulic conductivity of the top layer, the solute transfer from the soil matrix to crack water flow and the mean residence time of rapid drainage. The shrinkage characteristic and the soil hydraulic properties of the clay matrix showed a low sensitivity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Laboratory Experiments for Describing the Migration of Explosives in Sandy Aquifers Leaching the munition residues from the former explosive production site Elsnig in the Upper Elbe Valley (Saxony, Germany) resulted in an undefined plume of groundwater contaminated by nitroaromatics and nitroamines approaching important drinking water resources. Laboratory experiments were carried out to investigate transport and fate phenomena of such substances in aquifer materials. Specific solute storage and migration parameters for modelling the subsurface migration processes were obtained from steady state experiments in soil cores used as 0-dimensional reactors and from dynamic breakthrough curves in soil columns. Using the 0-dimensional reactor tests we focused on isotherm estimation. Sorption was found to be reflected best by Freundlich isotherms for concentrations of nitroaromatics less than 10 mg L?1 and low organic carbon content in the tested subsurface material. TNT-adsorption was slow and strongly correlated with soil permeability. Preliminary kinetic measurements revealed sorption equilibrium after two days. RDX-adsorption was low. All sorption experiments were conducted under non-sterile and aerobic conditions. Microbial activity was controlled by measuring the enzyme activity and the biomass in water and soil samples. After steady state experiments in the 0-dimensional reactors, products initiated by biodegradation of explosives such as aminonitrotoluenes were found. Based on literature, degradation was estimated and correlated with soil texture. For five components, different retardation was observed depending on soil texture by using native groundwater samples in the columns. Specially designed reactor facilities and soil column installations with temperature and flux control as well as on-line measurements of pH, pE, and conductivity were applied. Concentrations of contaminants were analysed both by high performance liquid chromatography and thin layer chromatography. Photolytic reactions have been prevented. Based on all these laboratory experiments, sorption, degradation, and retardation parameters of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), dinitrobenzene (DNB), dinitrotoluene (DNT), and mononitrotoluene (MNT) in Elsnig sandy aquifers were estimated.  相似文献   

14.
Measurements have been made of unsaturated and saturated lateral soil water flow on a convex hill-slope with a good soil cover and impermeable bedrock during natural rainstorms. The hydraulics of flow are examined in detail with particular reference to the role of breaks in vertical permeability, the change from saturated to unsaturated flow and the velocity of flow. In this instance, after rainfall slope flow is dominated by vertical unsaturated movement towards the profile base. Preceding upslope moisture gradients result in the growth of a zone of soil saturation upwards from the slope base. Slope discharge, through the B and B/C horizons, is related to the form of the saturation zone, within which flow is lateral, according to Darcy's law. The time required for vertical percolation and the low hydraulic conductivity of the lower soil horizons result in a hillslope hydrograph which is delayed and attenuated and cannot be regarded as stormflow. During drainage the saturation zone contracts and is replaced by a lateral unsaturated flow system at the profile base which supplies discharge from the B/C horizon for up to 42 days without further recharge. It is concluded that, in general, either distinct soil horizons or impermeable bedrock are essential for the initiation of lateral flow. Saturated flow is likely to dominate hillslope hydrographs through non-capillary pore spaces but these may be integrated to the point where Darcy's law still holds. Although lateral soil water flow must be a widespread phenomenon, it is unlikely to provide storm runoff to the stream unless saturated conditions are generated within the organic horizons for flow within the lower soil horizons is dominated by non-Darcian flow through non-capillary spaces in the soil.  相似文献   

15.
Evidence for the functioning of macropores and the presence of preferential flow in forest soils is equivocal. This is partly because many workers use only one diagnostic technique to indicate whether or not macropore flow occurs. In this paper three lines of evidence are used to suggest that preferential flow does not occur in the percolating waters of a coniferous forest soil under the range of hydrological conditions that prevail in the field. To simulate field conditions, realistic rainfall intensities were used in conservative solute transport experiments on four undisturbed soil columns. A method is described in which breakthrough data can be used to calculate the percentage of antecedent water displaced from a soil column during frontal-type breakthrough experiments. Calculations based on this method using the experimental data show that as little as five percent of the antecedent water was immobile. The simple form of the functional advection–dispersion equation, based on a single value for linear velocity and the dispersion coefficient was fitted to two of the breakthrough curves with reasonable accuracy, further suggesting that preferential flow did not occur in the experiments. Finally, soil moisture characteristic curves were determined for replicate soil samples from the forest soil. The operational water contents of the columns during the breakthrough experiments were compared with the soil moisture characteristics and it was found that pores exerting pressure heads greater than −0·5 kPa did not appear to contribute to flow through the columns, again suggesting an absence of preferential flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
The sorption behavior of nonylphenol (NP, a toxic endocrine disruptor) on marine sediments was studied in detail through a series of kinetic and thermodynamic sorption experiments. The results showed that the sorption reaction of NP on marine sediments reached equilibrium in 1.5 h and that it accorded well with the non-linear Ho-McKay pseudo-second-order model. The sorption isotherms of NP on H2O-treated sediments could be well described by the Linear isotherm model, while the sorption isotherm on H2O2-treated sediments could be well fitted with the Freundlich isotherm model. A positive correlation was found between the distribution coefficient (Kd) and the sediment organic carbon contents. The medium salinity showed a positive relation with the Kd and a negative relation with the dissolved organic carbon (DOC). Hexadecyl trimethyl ammonium bromide (CTAB) enhanced the sorption amount of NP the most, while sodium dodecylbenzenesulfonate (SDBS) enhanced it the least. The sorption reaction of NP on marine sediments was a spontaneous, physical, exothermic and entropy-decreasing process.  相似文献   

17.
18.
The development and testing of sediment simulation models require continuous monitoring of erosion processes and sediment yields from catchment areas at a wide range of scales. A series of experiments are described in which runoff and sediment yields from a small laboratory catchment were monitored through six consecutive storms applied to each of three soil types. Slope microtopography and the surface particle-size distribution were surveyed between storms. Pronounced peaks in sediment concentration at the start of each storm were not observed for these conditions, but significant variation in yield through a series of storms was shown to result from the interaction of rilling and armouring processes as the source of sediment shifted from the rills to interrill areas. In view of the experimental findings the validity of experiments reporting average or ‘stable’ erosion rates is questioned. The need for dynamic models capable of simulating rill development and changes in sediment availability is emphasized.  相似文献   

19.
Solute transport through structured, undisturbed soil has been studied in transient, unsaturated experiments using columns from grass and woodland sites on the Lancaster University campus. Three anionic tracers have been used, bromide (Br) and two fluorinated organic acids (pentraflurobenzoic acid and 2,6-diflurobenzoic acid). The process of displacement of stored water from undisturbed columns was investigated using successive inputs of different tracers under similar antecedent conditions. The results indicated that initial breakthrough was rapid, with a relative concentration of 0.8 being reached between 0.4 and 0.5 pore volumes of discharge. It was found that there was an apparent continued discharge of ‘old’ water, stored in the column before any additions of tracer, even after the addition of a total of 4.9 and 5.4 pore volumes of water for the grass and woodland columns, respectively. The implications of the results of these tracer studies for modelling solute transport in structured soils are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号