首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
成层地基一维土层对地震的随机反应分析   总被引:3,自引:0,他引:3  
首先基于改进的一维剪切梁模型,对成层土层推导了确定自振频率、振型函数、参与系数及稳态动力响应的封闭型解析表达式,首次证明了成层土层振型函数的正交性,然后在此基础上,利用随机振动理论,研究了成层土层对地震的随机动力反应问题,关于基岩输入地震加速度的功率谱密度函数,考虑了两种形式:白噪声谱和过滤白噪声谱。数值计算结果表明:对这两种谱,土层的最大期望反应是不相同的;平稳输入与输出过高估计了土层的随机反应。  相似文献   

2.
The traditional and still prevailing approach to characterization of flood hazards to dams is the inflow design flood (IDF). The IDF, defined either deterministically or probabilistically, is necessary for sizing a dam, its discharge facilities and reservoir storage. However, within the dam safety risk informed decision framework, the IDF does not carry much relevance, no matter how accurately it is characterized. In many cases, the probability of the reservoir inflow tells us little about the probability of dam overtopping. Typically, the reservoir inflow and its associated probability of occurrence is modified by the interplay of a number of factors (reservoir storage, reservoir operating rules and various operational faults and natural disturbances) on its way to becoming the reservoir outflow and corresponding peak level—the two parameters that represent hydrologic hazard acting upon the dam. To properly manage flood risk, it is essential to change approach to flood hazard analysis for dam safety from the currently prevailing focus on reservoir inflows and instead focus on reservoir outflows and corresponding reservoir levels. To demonstrate these points, this paper presents stochastic simulation of floods on a cascade system of three dams and shows progression from exceedance probabilities of reservoir inflow to exceedance probabilities of peak reservoir level depending on initial reservoir level, storage availability, reservoir operating rules and availability of discharge facilities on demand. The results show that the dam overtopping is more likely to be caused by a combination of a smaller flood and a system component failure than by an extreme flood on its own.  相似文献   

3.
Nonlinear seismic response analysis of earth dams   总被引:1,自引:0,他引:1  
The objective of this paper is to propose a general and efficient numerical procedure for analysing the dynamic response of geotechnical structures, which are considered as both nonlinear and two phase systems. In Section 2, the appropriate coupled dynamic field equations for the response of a two-phase soil system are briefly reviewed. The finite element spatial discretization of the field equations is described and time integration for the resulting nonlinear semi-discrete finite element equations is discussed. In Section 3, iterative techniques are examined for the solution of the global nonlinear system of finite element equations. A large amount of computational effort is expended in the iterative phase of the solution and so the iterative procedure used must be both reliable and efficient. The performance of three iterative procedure is examined: Newton Raphson, Modified Newton Raphson and Quasi-Newton methods, including BGFS and Broyden updates. Finally, in Section 4, the elasto-plastic earthquake response analysis of a two phase nonhomogeneous earth dam is presented. Extensive documentation exists1 for the particular problem selected including recorded earthquake motions at the base and crest of the dam. The results of the numerical calculations are compared to the recorded response of the dam.  相似文献   

4.
Inelastic deformations of structures subjected to strong earthquakes are commonly accepted by Aseismic Codes; some discrepancies exist in the different procedures proposed to design a structure for which the ductility demand is to be limited within acceptable values. To have a better insight into the seismic behaviour of multi-degree-of-freedom structures beyond the elastic range, the dynamic elasto-plastic response of a ten-storey shear system under two sets of artificial and recorded accelerograms is studied considering different stiffness-strength distributions and constitutive laws. Statistics of the results are presented, demonstrating the dependence of the overall and storey ductility values and of their ratio on the characteristics of the structure and excitation.  相似文献   

5.
A semi-analytical forward-difference Monte Carlo simulation procedure is proposed for the determination of the lower order statistical moments and the joint probability density function of the stochastic response of hysteretic non-linear multi-degree-of-freedom structural systems subject to nonstationary gaussian white noise excitation, as an alternative to conventional direct simulation methods. The method generalizes the so-called Ermak-Allen algorithm developed for simulation applications in molecular dynamics to structural hysteretic systems. The proposed simulation procedure rely on an assumption of local gaussianity during each time step. This assumption is tantamount to various linearizations of the equations of motion. The procedure then applies an analytical convolution of the excitation process, hereby reducing the generation of stochastic processes and numerical integration to the generation of random vectors only. Such a treatment offers higher rates of convergence, faster speed and higher accuracy. The procedure has been compared to the direct Monte Carlo simulation procedure, which uses a fourth-order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process. The considered system was a multi-dimenensional hysteretic shear frame, where the constitutive equation of the hysteretic shear forces are described by a bilinear hysteretic model. The comparisons show that significant savings in computer time and accuracy can be achieved.  相似文献   

6.
A new analytical development of the seismic hydrodynamic pressure inside pre-existing cracks on the upstream face of concrete dams is presented. The finite control volume approach is utilized to derive an expression for the seismic hydrodynamic pressure using the continuity principle and the linear momentum theorem for the fluid inside the crack. The derived pressure expression is a function of the relative crack-opening acceleration and velocity. The acceleration and velocity terms are then recast in the form of added mass and damping matrices which can then be included at the nodes inside the discrete crack of a finite element model. This procedure linearizes the solution of the problem. A dam, 55 m high and having an initial crack opening of 2 mm at the base or near the crest and subjected to two different accelerograms, is analysed. For high-frequency ground motion, the seismic hydrodynamic pressure inside the crack, at the base of the dam, appears to be 50 per cent higher than the corresponding hydrostatic pressure.  相似文献   

7.
This paper focuses on analyzing the nonlinear seismic response of high‐arch dams with cantilever reinforcement strengthening. A modified embedded‐steel model is presented to evaluate the effects of the strengthening measure on alleviating the extension and opening of cracks under strong earthquakes. By stiffening reinforced steel, this model can easily consider the steel–concrete interaction for lightly reinforced concrete (RC) members without the need of dividing them into RC and plain concrete zones. The new tensile constitutive relations of reinforced steel are derived from the load–deformation relationship of RC members in direct tension. This model has been implemented in the finite element code and its applicability is verified by two numerical simulations for RC tests. Subsequently, numerical analyses for a 210‐m high‐arch dam (Dagangshan arch dam) are conducted with and without the presence of cantilever reinforcement. Numerical results show that reinforcement strengthening can reduce the nonlinear response of the arch dam, e.g. joint opening and crest displacement, and limit the extension and opening width of concrete cracks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
高拱坝的非线性开裂静动力响应分析   总被引:3,自引:0,他引:3  
采用混凝土非线性本构模型和破坏准则,对300m级的高拱坝在静力荷载和地震荷载联合作用下的响应进行了线性、非线性对比分析。算例分析表明,对于300m级的高拱坝,地震荷载会进一步加剧混凝土的开裂,增大压应力,使其安全储备大大降低。拱坝材料非线性的影响不可忽视。  相似文献   

9.
Mountain rivers respond to strong earthquakes by rapidly aggrading to accommodate excess sediment delivered by co-seismic landslides. Detailed sediment budgets indicate that rivers need several years to decades to recover from seismic disturbances, depending on how recovery is defined. We examine three principal proxies of river recovery after earthquake-induced sediment pulses around Pokhara, Nepal's second largest city. Freshly exhumed cohorts of floodplain trees in growth position indicate rapid and pulsed sedimentation that formed a fan covering 150 km2 in a Lesser Himalayan basin with tens of metres of debris between the 11th and 15th centuries AD. Radiocarbon dates of buried trees are consistent with those of nearby valley deposits linked to major medieval earthquakes, such that we can estimate average rates of re-incision since. We combine high-resolution digital elevation data, geodetic field surveys, aerial photos, and dated tree trunks to reconstruct geomorphic marker surfaces. The volumes of sediment relative to these surfaces require average net sediment yields of up to 4200 t km–2 yr–1 for the 650 years since the last inferred earthquake-triggered sediment pulse. The lithological composition of channel bedload differs from that of local bedrock, confirming that rivers are still mostly evacuating medieval valley fills, locally incising at rates of up to 0.2 m yr–1. Pronounced knickpoints and epigenetic gorges at tributary junctions further illustrate the protracted fluvial response; only the distal portions of the earthquake-derived sediment wedges have been cut to near their base. Our results challenge the notion that mountain rivers recover speedily from earthquakes within years to decades. The valley fills around Pokhara show that even highly erosive Himalayan rivers may need more than several centuries to adjust to catastrophic perturbations. Our results motivate some rethinking of post-seismic hazard appraisals and infrastructural planning in active mountain regions. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
A new plastic-damage constitutive model for cyclic loading of concrete has been developed for the earthquake analysis of concrete dams. The rate-independent model consistently includes the effects of strain softening, represented by separate damage variables for tension and compression. A simple scalar degradation model simulates the effects of damage on the elastic stiffness and the recovery of stiffness after cracks close. To simulate large crack opening displacements, the evolution of inelastic strain is stopped beyond a critical value for the tensile damage variable. Subsequent deformation can be recovered upon crack closing. The rate-independent plastic-damage model forms the backbone model for a rate-dependent viscoplastic extension. The rate-dependent regularization is necessary to obtain a unique and mesh objective numerical solution. Damping is represented as a linear viscoelastic behaviour proportional to the elastic stiffness including the degradation damage. The plastic-damage constitutive model is used to evaluate the response of Koyna dam in the 1967 Koyna earthquake. The analysis shows two localized cracks forming and then joining at the change in geometry of the upper part of the dam. The upper portion of the dam vibrates essentially as rigid-body rocking motion after the upper cracks form, but the dam remains stable. The vertical component of ground motion influences the post-cracking response. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
This investigation deals with the rocking response of rigid blocks subjected to earthquake ground motion. A numerical procedure and computer program are developed to solve the non-linear equations of motion governing the rocking motion of rigid blocks on a rigid base subjected to horizontal and vertical ground motion. The response results presented show that the response of the block is very sensitive to small changes in its size and slenderness ratio and to the details of ground motion. Systematic trends are not apparent: The stability of a block subjected to a particular ground motion does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Overturning of a block by a ground motion of particular intensity does not imply that the block will necessarily overturn under the action of more intense ground motion. In contrast, systematic trends are observed when the problem is studied from a probabilistic point of view with the ground motion modelled as a random process. The probability of a block exceeding any response level, as well as the probability that a block overturns, increases with increase in ground motion intensity, increase in slenderness ratio of the block and decrease in its size. It is concluded that probabilistic estimates of the intensity of ground shaking may be obtained from its observed effects on monuments, minarets, tombstones and other similar objects provided suitable data in sufficient quantity is available, and the estimates are based on probabilistic analyses of the rocking response of rigid blocks, considering their non-linear dynamic behaviour.  相似文献   

12.
水电资源是四川省凉山州的第一资源,可开发量达5816万kW。但凉山州也属地震高发区,因此要重视水库的安全运行工作,建议建立一个全州性的水库地震监测综合台网。  相似文献   

13.
Risk analysis for clustered check dams due to heavy rainfall   总被引:6,自引:1,他引:6  
Check dams are commonly constructed around the world for alleviating soil erosion and preventing sedimentation of downstream rivers and reservoirs.Check dams are more vulnerable to failure due to their less stringent flood control standards compared to other dams.Determining the critical precipitation that will result in overtopping of a dam is a useful approach to assessing the risk of failure on a probabilistic basis and for providing early warning in case of an emergency.However,many check dams are built in groups,spreading in several tributaries in cascade forms,comprising a complex network.Determining the critical precipitation for dam overtopping requires a knowledge of its upstream dams on whether they survived or were overtopped during the same storm,while these upstream dams in turn need the information for their upstream dams.The current paper presents an approach of decomposing the dam cluster into(1)the heading dam,(2)border dams,and(3)intermediate dams.The algorithm begins with the border dams that have no upstream dams and proceeds with upgraded maps without the previous border dams until all the dams have been checked.It is believed that this approach is applicable for small-scale check dam systems where the time lag of flood routing can be neglected.As a pilot study,the current paper presents the analytical results for the Wangmaogou Check Dam System that has 22 dams connected in series and parallel.The algorithm clearly identified 7 surviving dams,with the remaining ones being overtopped for a storm of 179.6 mm in 12 h,which is associated with a return period of one in 200 years.  相似文献   

14.
Concrete dams suffering from alkali-aggregate reaction (AAR) exhibit swelling and deterioration of concrete or even cracking over a long period. The deterioration of concrete may significantly affect the dynamic behavior of the structures, and it is necessary to estimate seismic safety of the deteriorated dams subjected to strong earthquakes. A unified approach is presented in this paper for long-term behavior and seismic response analysis of AAR-affected concrete dams by combining AAR kinetics, effects of creep and plastic-damage model in the finite element method. The proposed method is applied to a gravity dam and an arch dam. The long-term behavior of the AAR-affected dams is first predicted in terms of anisotropic swelling, spatially non-uniform deterioration of concrete, and cracking initiation and propagation with the development of AAR. The seismic response of the deteriorated dams is subsequently analyzed based on the state of the structures at the end of the long-term analysis. The AAR-induced expansion displacements obtained from the proposed method are in good agreement with the measured ones in the long-term operation. The simulated cracking patterns in the dams caused by the continuing AAR are also similar to the field observation. The results from the seismic analysis show that AAR-induced deterioration of concrete and cracking may lead to more severe damage cracking in the dams during earthquake. The dynamic displacements are also increased compared with the dams that are not suffering from AAR. The seismic safety of the AAR-affected concrete dams is significantly reduced because of the AAR-induced deterioration of concrete and cracking.  相似文献   

15.
The rocking response of large flexible structures to earthquakes   总被引:1,自引:0,他引:1  
The rocking response of structures subjected to strong ground motions is a problem of ‘several scales’. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed.  相似文献   

16.
采用多井对多震的方式,选取山东省地下流体观测井网中同震响应较好的6口观测井作为研究对象,分别从水位变化形态和幅度对比分析2011年日本MW9.0地震、2012年苏门答腊MW8.6地震和2015年尼泊尔MW7.8地震引起的井水位变化特征,探讨引起该变化的可能机理。研究结果显示:水位同震变化形态以振荡为主;通过定量分析认为聊古一井井水位的阶升是由含水层渗透系数增大所致;位于同一断裂带上的聊古一井和鲁27井井水位在同一地震中所表现的变化形态不同,可能与两个观测井所处的地质构造条件和地震活动背景不同有关;区域应力场的变化会影响栖霞鲁07井的水位同震变化形态;水位同震变化幅度与震级、井震距存在一定关系,同时也取决于含水层水文地质条件的变化量。   相似文献   

17.
The response of two arch dams to spatially varying ground motions recorded during earthquakes is computed by a recently developed linear analysis procedure, which includes dam–water–foundation rock interaction effects and recognizes the semi‐unbounded extent of the rock and impounded water domains. By comparing the computed and recorded responses, several issues that arise in analysis of arch dams are investigated. It is also demonstrated that spatial variations in ground motion, typically ignored in engineering practice, can have profound influence on the earthquake‐induced stresses in the dam. This influence obviously depends on the degree to which ground motion varies spatially along the dam–rock interface. Thus, for the same dam, this influence could differ from one earthquake to the next, depending on the epicenter location and the focal depth of the earthquake relative to the dam site. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
以深圳某双层两跨岛式地铁车站为工程背景,考虑水平地震和水平、竖向地震耦合2种工况,采用ANSYS分析软件,研究SSI(土与结构相互作用)效应下结构的水平位移特征和内力响应规律.结果表明:与水平地震工况相比,耦合地震作用下结构最大内力增幅较大,由于竖向惯性荷载作用,产生最大内力位置不同;周围土体介质的变形与结构在震动中的变形关系密切;沿车站侧墙高度的相对水平位移在2种地震工况作用下的变化不容忽视,不可忽略竖向地震的影响,耦合地震作用下的相对水平位移可用线性曲线拟合.研究成果可为地铁车站的抗震设计提供参考.  相似文献   

19.
Different procedures are compared for the three-dimensional seismic cracking analysis of gravity and arch dams during strong earthquakes. The fracture procedures include the extended finite element method with cohesive constitutive relations, crack band finite element method with plastic-damage relations, and the finite element Drucker−Prager elasto-plastic model. These procedures are used to analyze the nonlinear dynamic response of Koyna dam to the 1967 Koyna earthquake and the seismic cracking of the Dagangshan arch dam subjected to design earthquake. The cracking process and profiles of the two dams using the three different procedures are compared. The applicability and the suitability of the three procedures for seismic cracking analysis of gravity and arch dams are discussed.  相似文献   

20.
An experimental study of non-linear mechanisms that may occur during intense seismic response of arch dams is described in this paper. The presentation deals with three types of non-linearity that were observed during shaking table model studies: monolith joint opening, cantilever cracking, and reservoir cavitation at the dam face. The monolith joint opening phenomenon was represented by a segmental arch ring model that simulated a horizontal slice of a prototype dam. The cantilever cracking and reservoir cavitation mechanisms were studied using a model gravity dam section. The principal conclusion of the investigation was that shaking table experiments provide a practical means of studying the non-linear earthquake response of concrete arch dams, including their actual failure mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号