首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid, field‐based assessments of rock hardness are required in a broad range of geomorphological investigations where rock intact strength is important. Several different methods are now available for taking such measurements, in particular the Schmidt hammer, which has seen increasing use in geomorphology in recent decades. This is despite caution from within the engineering literature regarding choice of Schmidt hammer type, normalization of rebound (R‐) values, surface micro‐roughness, weathering degree and moisture content, and data reduction/analysis procedures. We present a pilot study of the use of an Acoustic Energy Meter (AEM), originally produced, tested and developed within the field of underground mining engineering as a rapid measure of rock surface hardness, and compare it with results from a mechanical N‐Type Schmidt hammer. We assess its capabilities across six lithological study sites in southeast Queensland, Australia, in the Greater Brisbane area. Each rock exposure has been recently exposed in the 20th/21st century. Using a ‘paired’ sampling approach, the AEM G‐value shows an inverse relationship with Schmidt hammer R‐value. While both devices show variability with lithology, the AEM G‐values show less scatter than the Schmidt hammer. We conclude that each device can contribute to useful rock hardness testing in geomorphological research, but the AEM requires further field testing in a range of environments, and in particular on older and naturally‐exposed rock surfaces. Future evaluations can extend this pilot study by focusing on sampling procedures, energy sources, and data reduction protocols, within the framework of a comparison study with other rock hardness testing apparatus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Despite numerous investigations on substrate‐inhabiting microflora, especially lichens, very little is known about the colonization of coastal escarpments by lithobiontic micro‐organisms, inland of a retreating coastline in Africa. Reported herein are the results of a combined field observation and microscopy study focusing on the connection between microrelief of the substrate, colonies of lithobiontic micro‐organisms (in particular the lichen Xanthoria parietina) and microstructures of putative bacterial origin. The occurrence of weathering pits in which the early stages of the biotic development occurs, and the subsequent disintegration of the rock indicate that lichens, mosses and fungi act synergistically by alternating chemical and mechanical weathering. Penetration of grains by expansion and contraction of the hyphae depletes the rock matrix and contributes to the mechanical breakdown of the rock. Calcite rhombs on the weathered surfaces of the calcite‐cemented sandstones are severely etched with well‐developed rhomb‐shaped etch pits (‘spiky calcite’), holes, or has one or more of the faces removed, and their cores exposed and leached. Nanofilaments (c. 100–700 nm) and ‘nanomicrobial’ fruiting bodies (c. 250 nm) emanating from micropores appear to be common on affected crystalline structures. Weddellite present immediately below the thallus is a strong indicator of biomineralization. Quartz responds differently to chemical weathering by producing peeling structures and microbrecciation features. The dissolution of these crystals appears to be a surface reaction‐controlled process mediated by microbial microfilaments and nanofilaments. A model is proposed, firstly indicating early‐stage biochemical weathering, followed by biophysical weathering. Disintegration of the rock outcrops in due to a complex interplay of several events, probably beginning at the nanoscale with penetration of sites on crystal faces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A laboratory experiment has been conducted to examine the effects of ‘frost and salt’ weathering (i.e. physical breakdown by the freezing of salt solutions) on a limestone. Results show that the presence of certain salts in solution can inhibit frost damage. These findings are in direct conflict with those presented by Goudie (1974) and, more recently, Williams and Robinson (1981). Comparison of the experimental methods used in each of these three studies suggests that opposing results can be explained in terms of the different experimental procedures which were employed. If salt supply is frequent and plentiful then it seems likely that rock breakdown will be enhanced-this is the case represented by the experiment of Williams and Robinson. Conversely if the salt supply is limited and the amounts of salt remain more or less constant then rock breakdown will be inhibited-the case of the present experimental study. Caution is therefore advocated when attempting to extrapolate laboratory-derived results to infer on the behaviour of rocks under natural conditions. Several environmental situations in which ‘frost and salt’ weathering may be a possibility are dsiscussed, but it is concluded that further field data, especially concerning temperature regimes and salt availability at and below rock surfaces in cold regions, would be necessary before more definite statements could be made about the efficacy of this process.  相似文献   

4.
Rock moisture content is a major control of mechanical weathering, particularly freeze-thaw, and yet almost no data exist from field situations. This study presents moisture content values for rocks, taken from a variety of positions and conditions, in the maritime Antarctic. Additional information regarding the amount of water the rock could take up, as observed from laboratory experiments, is also presented. The results show that the approaches used in simulation experiments, particularly that of soaking a rock for 24 hours, may produce exaggerated results. It was found that the saturation coefficient (S-value) was a good indicator of frost susceptibility (based on water content) but that the derivation of that value may underestimate the potential of some rocks. The distribution of moisture within rocks is seen as an important, but unkown, factor. The results of these field moisture contents suggest that for simulations of freeze-thaw or hydration to be meaningful then they should have rock water contents based on field observations.  相似文献   

5.
The way in which rocks and engineering materials heat‐up and dry‐out in the intertidal zone is of relevance to both weathering and ecology. These behaviours can be measured in the laboratory under controlled conditions designed to replicate those occurring in the field. Previous studies have demonstrated differences in thermal behaviours between rock types and through time as a result of soiling in terrestrial environments, but the influence of weathering and colonization on rock behaviours in the intertidal zone has not been previously assessed. We measured the warming and drying of blocks of rock (limestone and granite) and marine concrete during ‘low‐tide’ events simulated in the laboratory, before and after a period of exposure (eight months) on rock platforms in Cornwall, UK. As well as differences between the material types, temperatures of control (unexposed) and field‐exposed blocks differed in the order of 1 to 2 °C. Drying behaviours were also different after field exposure. Differences during the first few hours of exposure to air and heat were attributed to discolouration and albedo effects. Over longer periods of time, changes in the availability of near‐surface pore water as a result of micro‐scale bioerosion of limestone and the development of bio‐chemical crusts on marine concrete [observed using scanning electron microscopy (SEM)] are suggested as mechanisms enhancing and reducing, respectively, the efficiency of evaporative cooling. The retention of moisture by epilithic biofilms may also influence thermal and drying behaviours of granite. These observations represent one of the first examples of cross‐scalar biogeomorphic linkages in the intertidal zone. The significance of the results for the subsequent efficiency of weathering, and near‐surface micro‐climatic conditions experienced by colonizing organisms is discussed. The involvement of microorganisms in the creation of more (or less) ecologically stressful conditions through the alteration of substratum geomorphic properties and behaviours is suggested as an example of ‘biogeomorphic ecosystem engineering’. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Blue-green algae have been observed to affect limestone weathering on Aldabra Atoll, Indian Ocean. Three different habitats can be identified on the rock surface, i.e. epilithic, chasmolithic, and endolithic. Algae in each habitat may affect weathering in various ways. Samples of blue-green algae and rock were taken from various terrestrial and coastal environments on Aldabra Atoll. Samples of limestone tablets and calcite crystals after one year in situ were also studied. Light and S.E.M. microscopy revealed that endolithic boreholes were present on many samples, especially those from frequently wetted sites, to a maximum depth of 800 μm. An ‘altered zone’ of micrite and algal filaments was also discovered in many samples. From morphological and petrographical evidence blue-green algal influences on weathering on Aldabra Atoll seem to be very complex and cannot easily be related to small scale landforms.  相似文献   

8.
Shattering rate, surface temperature, moisture content, and the physical and strength properties of bedrock were measured in four rockwall sites of the Japanese Alps. Five-year observations revealed that the bedrock shattering rate was usually much higher in the freeze-thaw period from October to next May than in the frost-free period from June to September. This indicates that frost action is the most important shattering process, although unusual heavy rainstorms in summer are also responsible for the shattering. A combination of some empirical relationships derived from recent laboratory experiments leads to a predictive model of the frost shattering rate. This model shows that the annual shattering rate is dependent on the annual freeze-thaw frequency on the rock surface, and the degree of saturation and tensile strength of the rock masses. The coefficients involved in the model were determined using the field data.  相似文献   

9.
The Mediterranean domain is characterized by a specific climate resulting from the close interplay between atmospheric and marine processes and strongly differentiated regional topographies. Corsica Island, a mountainous area located in the western part of the Mediterranean Sea is particularly suitable to quantify regional denudation rates in the framework of a source‐to‐sink approach. Indeed, fluvial sedimentation in East‐Corsica margin is almost exclusively limited to its alluvial plain and offshore domain and its basement is mainly constituted of quartz‐rich crystalline rocks allowing cosmogenic nuclide 10Be measurements. In this paper, Holocene denudation rates of catchments from the eastern part of the island of Corsica are quantified relying on in situ produced 10Be concentrations in stream sediments and interpreted in an approach including quantitative geomorphology, rock strength measurement (with a Schmidt Hammer) and vegetation cover distribution. Calculated denudation rates range from 15 to 95 mm ka‐1. When compared with rates from similar geomorphic domains experiencing a different climate setting, such as the foreland of the northern European Alps, they appear quite low and temporally stable. At the first order, they better correlate with rock strength and vegetation cover than with morphometric indexes. Spatial distribution of the vegetation is controlled by morpho‐climatic parameters including sun exposure and the direction of the main wet wind, so‐called ‘Libecciu’. This distribution, as well as the basement rock strength seems to play a significant role in the denudation distribution. We thus suggest that the landscape reached a geomorphic steady‐state due to the specific Mediterranean climate and that Holocene denudation rates are mainly sustained by weathering processes, through the amount of regolith formation, rather than being transport‐limited. Al/K measurements used as a proxy to infer present‐day catchment‐wide chemical weathering patterns might support this assumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Weathering reduces the strength of rocks and so is a key control on the stability of rock slopes. Recent research suggests that the geotechnical response of rocks to weathering varies with ambient stress conditions resulting from overburden loading and/or stress concentrations driven by near-surface topography. In addition, the stress history experienced by the rock can influence the degree to which current weathering processes cause rock breakdown. To address the combined effect of these potential controls, we conducted a set of weathering experiments on two sedimentary lithologies in laboratory and field conditions. We firstly defined the baseline geotechnical behaviour of each lithology, characterising surface hardness and stress–strain behaviour in unconfined compression. Weathering significantly reduced intact rock strength, but this was not evident in measurements of surface hardness. The ambient compressive stress applied to samples throughout the experiments did not cause any observable differences in the geotechnical behaviour of the samples. We created a stress history effect in sub-sets of samples by generating a population of microcracks that could be exploited by weathering processes. We also geometrically modified groups of samples to cause near-surface stress concentrations that may allow greater weathering efficacy. However, even these pronounced sample modifications resulted in insignificant changes in geotechnical behaviour when compared to unmodified samples. The observed reduction in rock strength changed the nature of failure of the samples, which developed post-peak strength and underwent multiple stages of brittle failure. Although weakened, these samples could sustain greater stress and strain following exceedance of peak strength. On this basis, the multi-stage failure style exhibited by weaker weathered rock may permit smaller-magnitude, higher-frequency events to trigger fracture through intact rock bridges as well as influencing the characteristics of pre-failure deformation. These findings are consistent with patterns of behaviour observed in field monitoring results. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
The Schmidt hammer is a useful tool applied by geomorphologists to measure rock strength in field conditions. The essence of field application is to obtain a sufficiently large dataset of individual rebound values, which yields a meaningful numerical value of mean strength. Although there is general agreement that a certain minimum sample size is required to proceed with the statistics, the choice of size (i.e. number of individual impacts) was usually intuitive and arbitrary. In this paper we show a simple statistical method, based on the two‐sample Student's t‐test, to objectively estimate the minimum number of rebound measurements. We present the results as (1) the ‘mean’ and ‘median’ solutions, each providing a single estimate value, and (2) the empirical probability distribution of such estimates based on many field samples. Schmidt hammer data for 14 lithologies, 13–81 samples for each, with each sample consisting of 40 individual readings, have been evaluated, assuming different significance levels. The principal recommendations are: (1) the recommended minimum sample size for weak and moderately strong rock is 25; (2) a sample size of 15 is sufficient for sandstones and shales; (3) strong and coarse rocks require 30 readings at a site; (4) the minimum sample size may be reduced by one‐third if the context of research allows for higher significance level for test statistics. Interpretations based on less than 10 readings from a site should definitely be avoided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

13.
A laboratory simulation of salt weathering was used to ascertain the effects of sodium sulphate and sodium carbonate under ‘Negev’ conditions using a single immersion technique. Three main points were addressed: what are the grain size and textural characteristics of the debris liberated from limestones and a sandstone, what do scanning electron microscope observations of the weathered samples tell us about the decay processes involved, and how does the rate of debris liberation change during the course of 100 cycles? The grain size characteristics of the liberated debris tended to be multimodal and were related to the original petrological characteristics of the rock. Large amounts of fines were produced which are believed to be analogous to the ‘rock flour’ of arid areas. Blistering was also observed. Scanning electron microscope analysis revealed differences in the style of attack for different rock types and salt treatments, and revealed the pattern of salt crystallization in pores and the nature of cracking. The rate of debris liberation tended to decline or remain constant through time. The reasons for this remain obscure, but it is evident that diurnal cycles of temperature and humidity change can cause continuing rock weathering long after the initial input of salt to the rock has taken place.  相似文献   

14.
Outcrops of young, sedimentary, argillaceous rocks with well developed fabric display rapid changes in their properties when subject to tropical weathering. The change in the materials is often accompanied by mass movement activity and the geomorphological consequence in terms of landforms is usually the development of badlands topography. Detailed field and laboratory studies have been undertaken on the Joe's River Formation, Barbados, and the Lichi Melange, Taiwan. Both are sedimentary mudrocks with well developed, scaly fabrics. Physical and geotechnical laboratory tests have been conducted on samples collected from type site locations to elucidate associations between material properties, earth surface processes and landform development. While the inherent physical properties show little or no difference in the transition from unweathered to highly weathered materials, by applying the critical state model, the mudrock geotechnical properties can be shown to change significantly. As weathering commences, material strength surprisingly increases. Only after a period of more extensive weathering do mechanical properties confirm increasingly incompetent materials. The initial strength increase appears to be due to weathering-induced modification of the fabric. The subsequent strength drop is a product of weathering-induced modification of both the fabric and the in situ, intact sediment. It is suggested that by applying the critical state model, a greater consideration can be gained of the geotechnical response of the sediments to weathering.  相似文献   

15.
Reduced major axis analysis is used to describe monthly temperature averages for daily maxima, minima, means and ranges at a sequence of bedrock microenvironments in the alpine zone of the Colorado Front Range. Seven thermistors buried at 1 cm in bedrock provide comparative data on easterly, southerly and westerly aspects, and also upon the impact of snow accumulation (?0.5m to ≥4.0m deep) against an east-facing rock wall. Intersite temperatures commonly differ by less than 5°C and, rarely, by more than 10°C. The freezing intensity of freeze-thaw cycles occurring within the confines of a seasonal snow patch rarely dropped to ?5°C, while at snowfree, vertical faces freezing dropped to ?5°C quite commonly. Comparison with laboratory established criteria for effective freeze-thaw weathering (abundant moisture and freezing to at least ?5°C) suggests that moisture rich microsites lack adequate freezing intensity, while adequately frozen sites lack moisture. Available data suggest that the overlap between freeze-thaw and hydration weathering requires careful re-evaluation.  相似文献   

16.
Weathering is linked complexly to the erosion and evolution of rock slopes. Weathering influences both the strength of rock slopes and the stresses that act upon them. While weathering has often been portrayed in an over‐simplified way by those studying rock slope instability, in reality it consists of multiple processes, acting over different spatial and temporal scales, with many complex inter‐linkages. Through a demonstration of the sources of non‐linearities in rock slope weathering systems and their implications for rock slope instability, this paper proposes five key linkages worthy of further study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Due to various decay processes associated with weathering, the stability of artificial slopes in weak rocks may be affected well within their envisaged engineering lifetime. Conceptually, the decay following the initial stress release after excavation can be described as a process seeking equilibrium between weathering and erosion. The extent to which such an equilibrium is actually reached influences the outcome of the weathering‐erosion decay process as well as the effects that the decay has on the geotechnical properties of the exposed rock mass, and thus ultimately the stability of slopes affected by erosion and weathering. This paper combines two conceptual models for erosion and weathering, and derives a numerical model which predicts the resulting slope development. This can help to predict the development of a slope profile excavated in a weak rock in time, and can be extended with the addition of strength parameters to the weathering profile to enable prediction of slope stability as a function of time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Determining the rates of rock weathering is difficult because, firstly, the weathering rate of rocks is usually so slow that it is difficult to measure; secondly, it is also difficult to determine the start time and duration of weathering. The Shanxi River Valley in Fujian, China dried up after a reservoir was built upstream in 1959, and became a stone quarry site. Quarrying ceased in 1977, so a large amount of quarry wastes with artificially excavated surfaces were left in the valley. The concave-upward curved rocky surface, broken by manual excavation, easily contains rainwater in its central part, which was easily weathered into a more concave surface. Plaster mould casting was performed in situ on such a concave surface of an excavated stone rock in the valley and scanned with a high-precision 3D scanner to obtain 3D data of the concave-upward rock surface and its more concave middle part, which was considered as an initial weathering pit. The 3D model provided an in-depth understanding of the initial formation process of weathering pits, indicating that: (1) the average weathering rate of a weathering pit is 10.8 ± 0.49 cm ka−1; (2) weathering pits are generally formed by standing water in depressions on a flat near-horizontal rock surface due to weathering actions involving water; (3) the deepening rate of a weathering pit is about four times greater than that of the surrounding area; (4) the growth of a weathering pit can begin in some small concavities on the flat rock surface without pre-existing depressions and gradually expands; (5) a weathering pit is generally wider than deep or with a flat bottom due to expansion with a lateral weathering rate that is greater than that of the vertical, and the lamination of the host rock is not necessary for the formation of flat-floored weathering pits. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
It has been hypothesized that many soil profiles reach a steady‐state thickness. In this work, such profiles were simulated using a one‐dimensional model of reaction with advective and diffusive solute transport. A model ‘rock’ is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady‐state regimes of weathering. At the lowest erosion rates, a local‐equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport‐limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil–air interface. In the weathering‐limited regime, here called the kinetic regime, albite persists to the soil–air interface. The steady‐state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady‐state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering‐limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ΔH of dissolution, while for local equilibrium regimes they are related to the ΔH only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Honeycomb weathering occurs in two environments in Late Cretaceous and Eocene sandstone outcrops along the coastlines of south‐west Oregon and north‐west Washington, USA, and south‐west British Columbia, Canada. At these sites honeycomb weathering is found on subhorizontal rock surfaces in the intertidal zone, and on steep faces in the salt spray zone above the mean high tide level. In both environments, cavity development is initiated by salt weathering. In the intertidal zone, cavity shapes and sizes are primarily controlled by wetting/drying cycles, and the rate of development greatly diminishes when cavities reach a critical size where the amount of seawater left by receding tides is so great that evaporation no longer produces saturated solutions. Encrustations of algae or barnacles may also inhibit cavity enlargement. In the supratidal spray zone, honeycomb weathering results from a dynamic balance between the corrosive action of salt and the protective effects of endolithic microbes. Subtle environmental shifts may cause honeycomb cavity patterns to continue to develop, to become stable, or to coalesce to produce a barren surface. Cavity patterns produced by complex interactions between inorganic processes and biologic activity provide a geological model of ‘self‐organization’. Surface hardening is not a factor in honeycomb formation at these study sites. Salt weathering in coastal environments is an intermittently active process that requires particular wind and tidal conditions to provide a supply of salt water, and temperature and humidity conditions that cause evaporation. Under these conditions, salt residues may be detectable in honeycomb‐weathered rock, but absent at other times. Honeycomb weathering can form in only a few decades, but erosion rates are retarded in areas of the rock that contain cavity patterns relative to adjacent non‐honeycombed surfaces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号