首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O. Bschorr 《Solar physics》1988,116(2):401-404
In a gas heat transport is accompanied by the transport of momentum. The momentum change that accompanies a spatial change in heat flow - this is the radiometer force - results in a pressure gradient. This effect is analogous to the radiation pressure of wavemechanical energy transport. The radiometer pressure increases with temperature and temperature gradient but is independent of the gas density. In the transition zone and in the solar corona the radiometer forces have a definite effect on the pressure balance within the solar atmosphere. In this note the relationship between the radiometer pressure and the acoustic radiation pressure in the solar atmosphere is derived.  相似文献   

2.
The possibility that vertical acoustic waves with frequencies lower than the cutoff frequency corresponding to the temperature minimum pass this minimum is investigated. It is shown that the averaged temperature profile in the solar atmosphere can be approximated by several so-called reflectionless profiles on which the acoustic waves propagate without internal reflection. The possibility of the penetration of vertical acoustic waves, including low-frequency ones, into the solar corona is explained in this way.  相似文献   

3.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

4.
The direct propagation of acoustic waves, driven harmonically at the solar photosphere, into the three-dimensional solar atmosphere is examined numerically in the framework of ideal magnetohydrodynamics. It is of particular interest to study the leakage of 5-minute global solar acoustic oscillations into the upper, gravitationally stratified and magnetised atmosphere, where the modelled solar atmosphere possesses realistic temperature and density stratification. This work aims to complement and bring further into the 3D domain our previous efforts (by Erdélyi et al., 2007, Astron. Astrophys. 467, 1299) on the leakage of photospheric motions and running magnetic-field-aligned waves excited by these global oscillations. The constructed model atmosphere, most suitable perhaps for quiet Sun regions, is a VAL IIIC derivative in which a uniform magnetic field is embedded. The response of the atmosphere to a range of periodic velocity drivers is numerically investigated in the hydrodynamic and magnetohydrodynamic approximations. Among others the following results are discussed in detail: i) High-frequency waves are shown to propagate from the lower atmosphere across the transition region, experiencing relatively low reflection, and transmitting most of their energy into the corona; ii) the thin transition region becomes a wave guide for horizontally propagating surface waves for a wide range of driver periods, and particularly at those periods that support chromospheric standing waves; iii) the magnetic field acts as a waveguide for both high- and low-frequency waves originating from the photosphere and propagating through the transition region into the solar corona. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

5.
Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).  相似文献   

6.
Excess heating of the active region solar atmosphere is interpreted by the decay of MHD slow-mode waves produced in the corona through the non-linear coupling of Alfvén waves supplied from subphotospheric layers. It is stressed that the Alfvén-mode waves may be very efficiently generated directly in the convection layer under the photosphere in magnetic regions, and that such magnetic regions, at the same time, provide the ‘transparent windows’ for Alfvén waves in regard to the Joule and frictional dissipations in the photospheric and subphotospheric layers. Though the Alfvén waves suffer considerable reflection in the chromosphere and in the transition layer, a certain fraction of this large flux is propagated out to the corona, and a large velocity amplitude exceeding the local Alfvén velocity is attained during the propagation along the magnetic tubes of force into a region of lower density and weaker magnetic field. The otherwise divergence-free velocity field in Alfvén waves gets involved in such a case with a compressional component (slow-mode waves) which again is of considerable velocity amplitude relative to the local acoustic velocity when estimated by using the formulation for non-linear coupling between MHD wave modes derived by Kaburaki and Uchida (1971). Therefore, the compressional waves thus produced through the non-linear coupling of Alvén waves will eventually be thermalized to provide a heat source. The introduction of this non-linear coupling process and the subsequent thermalization of thus produced slow-mode waves may provide means of converting the otherwise dissipation-free Alfvén mode energy into heat in the corona. The liberated heat will readily be redistributed by conduction along the magnetic lines of force, with higher density as a consequence of increased scale height, and thus the loop-like structure of the coronal condensations (or probably also the thread-like feature of the general corona) may be explained in a natural fashion.  相似文献   

7.
T. Takakura 《Solar physics》1979,62(2):375-382
On the basis of the previous numerical simulations, a new mechanism for the emission of the fundamental radio waves of solar radio type III bursts is presented. This hypothesis is to attribute the fundamental radio emission to the coalescence of the plasma waves with the low frequency turbulence, whistler or ion acoustic waves, pre-existing on the way of the electron beam which excite the plasma waves.It is estimated that ion acoustic waves could be occasionally unstable in the solar corona due to that drifting bi-Maxwellian distribution of electrons as observed in the solar wind, which is probably caused by collision-less heat conduction.It is also suggested that the reduced damping of the ion acoustic waves in such a distorted electron distribution in the corona may decrease the threshold electric current to cause the anomalous resistivity to be the onset of the solar flares.  相似文献   

8.
The dominant response of the terminator is found to be due to the change in thermospheric absorption of solar radiation, and leads to two types of atmospheric waves: (i) a ducted acoustic wave at altitudes below 100 km and (ii) a boundary wave concentrated along the mesopause.  相似文献   

9.
We study the propagation of a train of acoustic shocks guided by diverging magnetic fields through a static model of the solar chromospheric network and transition region. Our results show that for initial flux densities of the order 106 ergs cm–2 s–1 in the lower chromosphere, the local efficiency of acoustic transmission into the corona can be much higher than calculated for a plane parallel atmosphere. Thus acoustic energy will tend to be deposited at higher chromospheric levels in diverging magnetic fields, and magnetic guiding may well influence the temperature profile of the network and plages. But the total flux that can be transmitted into the corona along such diverging fields is severely limited, since the magnetic elements occupy a small fractional area of the photosphere, and the transmission efficiency is a rapidly decreasing function of initial acoustic flux density. We conclude that diverging magnetic fields and a varying ratio of specific heats are not likely to allow high frequency shocks to dissipate high enough in a static atmosphere, to contribute significantly to the coronal energy balance. This result strengthens the view that acoustic waves do not heat the solar corona. However, the conclusion may be sensitive to the influence of observed mass motions, such as spicules.  相似文献   

10.
It is generally believed that the heating of the solar corona is caused by waves originating in the photosphere and propagating into the corona where their energy is dissipated. The medium through which these waves propagate is in general permeated by magnetic fields complicating the behaviour of this propagation considerably. We have therefore analysed the wave motions in a plasma permeated by constant magnetic and gravitational fields. In general, three waves modes were found, which we called the + mode, –mode, and the Alfvén mode. Each mode was found to be strongly coupled to each of the three kinds of motion; acoustic, gravity, and hydromagnetic. However, the Alfvén mode was found to be separable from the dispersion relation, and therefore independent of compressibility and gravity. The local dispersion relation is derived and expressed in nondimensional form independent of the constants that describe a particular atmosphere. From the dispersion relation one can show that rising waves propagate either with a constant or a growing wave amplitude depending on the magnitudes and directions of the gravitational field, magnetic field, and the wave vector. The variation of the density with height is taken into account by a generalized W.K.B. method. Equations are found which give the height at which wave reflection occurs, giving the upper bound for possible wave propagation.Work supported by the National Aeronautics and Space Administration under Research Grant NGR-29-001-016.On leave of absence from the Desert Research Institute and Department of Physics, University of Nevada, Reno, Nevada, U.S.A.  相似文献   

11.
The acoustic waves generated in the solar atmosphere propagate globally as well as upwards. These waves interact with the solar magnetic field structures and are ducted upwards. The velocity of these modified acoustic waves is shown to vary in a modelled solar atmosphere. The solar plasma propagating upwards with these waves are likely to alter the observed features of spicules, granules, and supergranules during changing phases of sunspot regions.  相似文献   

12.
Based on a plane-parallel isothermal model solar atmosphere stratified in the field of gravity, we investigate the main patterns of vertical propagation of magnetoacoustic gravity waves (MAGWs) in the approximation of a horizontal potential magnetic field. We have established that the cutoff frequency for MAGWs below which they cannot propagate does not depend on the magnetic field strength and is equal to that for acoustic gravity waves, the Lamb frequency. The cutoff frequency is shown to be unaffected by the linear interaction between counterpropagating MAGWs that results from a nonuniform height distribution of the Alfvén velocity and that causes the reflection of propagating waves at relatively large heights.  相似文献   

13.
An exact solution for a spherically-symmetric model of a magneto-radiative shock wave in the solar wind caused by the explosive energy release of a solar flare has been, obtained in the case when energy released is an increasing function of the time. It has been shown that due to increasing energy, density, pressure, radiation flux, magnetic field and shock velocity change considerably.  相似文献   

14.
It is shown that the discontinuous jump in the vertical wave energy flux of slow hydromagnetic-gravity waves, occurring at a critical level, which is accompanied by wave absorption, and the existence of a reflection point imply that slow waves are trapped in the solar atmosphere. Thus such a system behaves as a leaky wave guide.  相似文献   

15.
The dissipation of ducted, fast magnetoacoustic waves by ion viscosity, electron heat conduction and radiation is re-considered and the results show that these waves are not readily dissipated in the solar corona. It seems unlikely, therefore, that they will play a role in the heating of the solar atmosphere.  相似文献   

16.
The effect of vertical oscillations with periods between 90 s and 300 s on a solar atmosphere governed by heat conduction and radiation loss is examined. The effect is found to be primarily a redistribution, rather than a net addition or subtraction, of energy within the low corona, mainly by long period (180 to 300 s) oscillations. The redistribution of energy is found to affect the time-averaged temperature and density profiles of such an atmosphere, particularly in the low corona. The amount of energy redistributed is found to increase with increasing period.  相似文献   

17.
High-frequency p-mode intensity data, obtained from the South Pole in 1987, 1988, 1990 and 1994, show a sharp variation in the phase-shift function and in the frequency spacings near 5.5 mHz. Using a simple theoretical model, we demonstrate that this behaviour is caused by an acoustic resonance in the atmosphere between the excitation source and the upper reflection level. We discuss the diagnostic properties of this resonance, which is sensitive to the acoustic reflectivity of the solar atmosphere and to the location and parity of the excitation source. When applied to the solar data, our model indicates that the average acoustic reflectivity increases with increasing solar activity. The model also shows that the acoustic source has composite parity and is located within one pressure scaleheight of the base of the photosphere.  相似文献   

18.
我们认为存在于太阳高层大气中的一种稳定的物质交换,可以起到冷却日冕和加热色球一日冕过渡区的热机作用。还考虑到来自日冕的热传导和过渡区的辐射损失,计算了太阳过渡区的温度、密度和速度分布。并对物质流通量及速度边值与太阳过渡区厚度之间的关系作了讨论。  相似文献   

19.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

20.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号