首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
介绍了一个应用于C波段卫星信号接收机的低噪声放大器(LNA)的设计过程。为达到低噪声和高增益的目标,该低噪声放大器是利用低噪声的PHEMT晶体管ATF36077(用在第一级)和噪声性能良好的微波单片放大器MGA86576(用在第二级)级联设计完成的。测试结果表明,该低噪声放大器的性能达到了预定指标:在3.8 GH至4.2 GHz工作带宽内噪声系数NF≤0.7 dB,增益≥36 dB,1 dB带宽约350 MHz。  相似文献   

2.
3MHz区分放大器有天,VLBI接收机,国防科研中有广泛的应用,研制成功的5MHz区分放大器在相位噪声和隔离度上分达到了频期效果,相位噪声的插入损耗小于3dB,隔离度大于60dB,并且保持了氢频标信号的稳定度,还可用于长线传输,因此比较好的满足了时频系统,特别是主稳定本振系统的使用要求,而且有着良好的应用前景。  相似文献   

3.
30~300 MHz的低频段陆基天线阵是重要的射电观测设备,在该频段进行射电观测面临无线电环境复杂、天空背景温度高等特点。介绍了一种基于微波芯片设计的新型低频段模拟接收机。接收机由初级带通滤波器(30~70 MHz)、初级放大器、次级带通滤波器(55~65 MHz)、180°移相器、两个次级放大器组成。在测试云南天文台短波段无线电环境的基础上,接收机实现了对55~65 MHz可观测频段的选通和放大,整机噪声约为320 K,增益63 d B左右。同时作为中国射电天文低频阵前期研究的一部分,由于采用单片微波集成电路(Monolithic Microwave Integrated Circuit,MMIC)芯片,接收机具有体积小、成本低、易于量产等特点。  相似文献   

4.
一种C波段射频滤波器的设计   总被引:1,自引:0,他引:1  
介绍了一种应用于C波段接收机射频前端,并利用耦合微带线设计的射频滤波器。利用ADS软件的仿真结果验证了所设计的射频滤波器具有如下特性:中心频率为C1;80MHz通带内信号起伏较小;噪声系数约1.8dB;能有效抑制镜像信号干扰,满足设计要求。  相似文献   

5.
简要介绍了利用现代数字信号处理技术实现的适合宽带超宽带接收机的数字边带分离混频器的数学原理,同时对数字边带分离混频器进行了优化,并用MATLAB在L波段(1~2 GHz)对数字边带分离混频器优化进行了仿真验证,在500 MHz的带宽内实现了优于300 dB的边带抑制率。这些工作为利用数字技术实现数字边带分离混频器提高了运算速度,符合射电天文接收机向宽带超宽带和集成化发展的趋势。  相似文献   

6.
介绍了云南天文台10 m太阳射电望远镜800~975 MHz模拟接收机的研制。接收系统采用射频-中频两级放大+远程控制步进衰减器模式,能方便地通过远程界面控制射频或中频链路的增益倍数,使得整个接收机动态范围在-35 dB-+25 dB。这样的设计防止在该频段强RFI信号造成的接收机饱和,并且获得了大动态范围,能够满足强射电爆发的要求,弥补了10 m射电望远镜的缺省频段。  相似文献   

7.
L波段致冷低噪声放大器   总被引:3,自引:0,他引:3  
介绍了应用于射电天文望远镜L波段接收机系统的致冷低噪声放大器的设计。该放大器采用了Agilent公司ATF - 35 14 3假晶高电子迁移率场效应管 (pHEMT) ,为两级级联结构 ,频率范围16 0 0~ 174 0MHz。在物理温度小于 15K(Kelvin)的环境中 ,放大器工作正常 ,两级直流偏置点都在2V 7mA ,增益 2 8.7~ 2 8.9dB ,噪声 3.2~ 3.8K ,输入匹配好于 - 2 2dB ,输出匹配好于 - 16dB ,无条件稳定。  相似文献   

8.
为了满足现有时频系统对分配放大器的要求,设计了一种小型频标分配放大器。该小型放大器带宽范围1MHz~100MHz,有1个输入,4个输出,采用一种电流反馈型、超宽带集成运算放大芯片CLC449。测试结果表明:二次谐波<-50dBc;路间隔离度为92.5dB;反向隔离度为105dB;相位噪声从100Hz开始趋于平稳,约-155dBc,满足时频系统的要求。最后提出了一些改进建议。  相似文献   

9.
介绍了应用于射电天文望远镜L波段接收机系统的致冷低噪声放大器的设计。该放大器采用了Agilent公司ATF-35143假晶高电子迁移率场效应管(pHEMT).为两级级联结构,频率范围1600~1740MHz。在物理温度小于15K(Kelvin)的环境中,放大器工作正常,两级直流偏置点都在2V7mA,增益28.7—28.9dB,噪声3.2—3.8K,输入匹配好于-22dB,输出匹配好于-16dB,无条件稳定。  相似文献   

10.
针对目前射电观测设备对数字接收机高采样率、宽带宽、多通道幅相一致,以及高速率直接采样和时域数据存储的需求,通过调研分析多个射电观测设备的数字处理系统的技术架构和功能,提出了基于ZYNQ SOC和ADS54J60等核心器件实现的4通道数字接收机系统方案。单通道最高可实现1 GSPS采样率,具有灵活可拓展的优势,可以通过添加板卡实现采样通道数的增加,能够满足未来大规模可拓展射电干涉阵列的需求。系统由高速数据采集卡、光通信接收卡、服务器3部分设备组成,基于SerDes的高速串行接口技术目前实现16位量化精度、300 MSPS的直接采样功能,具备60 dB满量程信噪比、40 Gbps的SFP+数据传输带宽、1.5 GB/s的PCIe通信带宽,可对4.5~150 MHz范围内中频模拟信号进行采集,目前该系统已经完成软硬件设计和测试。在测试中对频率为10 MHz、幅度为125 mV的正弦波信号进行采样,得到4通道间幅度差小于1 mV,相位延时小于3.3 ns。系统集成可编程SFP+通信接口和多机同步机制,可适应多元阵列同步采集的需要,可同时对原始射电信号的数据进行存储,为射电研究提供更详细的时域数...  相似文献   

11.
低噪声放大器(Low Noise Amplifier, LNA)是接收机系统的关键器件,其性能决定了接收机系统的噪声温度和对微弱射电信号的放大能力。采用Avago公司砷化镓(GaAs)工艺的pHEMT ATF-54134研制了一款可工作在1.35~2.0 GHz频率范围内的低噪声放大器。该放大器采用两级拓扑结构,单电源自偏置供电,典型增益28 dB,典型噪声温度35 K,输入回波损耗优于-10 dB,输出回波损耗优于-15 dB,输入1 dB压缩点为-13 dBm。该放大器除了可用于对中性氢、脉冲星和羟基进行观测的射电望远镜接收机以外,还可用于电波环境监测系统。  相似文献   

12.
为检测微弱的射电信号,要求望远镜接收机噪声性能良好.低噪声放大器(Low Noise Amplifier, LNA)作为接收机前端关键电路,其噪声系数和增益决定了整机的噪声性能.设计了一款1.2–2.2 GHz的低噪声放大器,电路采用两级级联结构,第2级通过引入负反馈,在改善增益平坦度和拓宽带宽的同时减小噪声,级间经过后级输入阻抗优化后仅需一个隔直电容.并引入有损输出匹配网络,实现高增益、低噪声、良好回波损耗和较为平坦的宽带LNA设计.测试结果表明,在1.2–2.2 GHz频段增益30–33 dB,噪声温度平均值为47 K,输出1 d B压缩点大于11.3 dBm.测试性能良好,可用于该频段接收机系统中.  相似文献   

13.
本文报告了3521MHz太阳射电望远镜全晶体管化的接收机系统。文中给出了中频放大系统、低频放大系统、调制源及其电源的结构原理、技术指标、测试方法及主要技术指标的测试结果。最后报告了主要调试经验。  相似文献   

14.
W波段接收机系统能有效接收多条重要的射电天文分子谱线信息,对于天文观测和科学研究有重要意义。W波段正交模耦合器(Ortho-Mode Transducer, OMT)作为接收机系统实现极化分离的关键器件,其性能对接收机整体性能有重要影响。介绍了一款基于Boifot结构的W波段宽带正交模耦合器,并介绍了正交模耦合器的工作原理和设计流程。仿真结果表明,在70~116 GHz频带内,正交模耦合器相对带宽达到49.4%,回波损耗优于18.7 dB,交叉极化优于55.8 dB,端口隔离度优于54 dB。  相似文献   

15.
本文对十米口径射电望远镜的1420MHz总强度接收机的研制,调试和检测做了总结。  相似文献   

16.
低噪声放大器在射电天文望远镜接收机中是一个重要的前端组件,其性能对接收机的灵敏度和噪声有至关重要的影响。采用OMMIC公司70 nm GaAs mHEMT工艺研究和设计了一款工作频率为2~18 GHz的超宽带单片微波集成低噪声放大器芯片,芯片面积为2 mm×1 mm。放大器电路采用三级级联放大、双电源供电拓扑结构,常温在片测试结果显示,全频带增益大于28 dB,噪声温度平均值为93 K,直流功耗150 mW,无条件稳定。该放大器芯片覆盖了射电天文S,C,X,Ku 4个传统观测波段,适用于厘米波段超宽带接收前端和毫米波段超宽带中频放大模块。  相似文献   

17.
本文提出了用于230一300MHz太阳声光射电频谱仪的宽频带超外差式接收机的基本设计指标和方框图。  相似文献   

18.
L波段太阳射电爆发是导航系统不稳定的潜在影响因素,通过L波段内精密太阳射电流量的监测可以实时发现太阳射电爆发干扰导航事件,为此,云南天文台拟建立一个L波段多频点太阳射电监测系统。无线电环境的有效评估对于该监测系统观测数据的稳定获取至关重要。介绍了监测平台的无线电监测准备研究,通过对云南天文台L波段无线电环境进行100 h的测试,提出一种基于Simple Thresholding算法和CUSUM(Cumulative Sum)算法的改进阈值算法,遴选出介于北斗B1, B2和B3频点,全球定位系统L1和L2频点之间7个5 MHz无线电干扰较少的无线电通带,分别为1 551~1 555 MHz, 1 596~1 600 MHz, 1 161~1 165 MHz, 1 221~1 225 MHz, 1 246~1 250 MHz, 1 291~1 295 MHz和1 231~1 235 MHz,其洁净率分别为98.329%, 98.301%, 98.315%, 98.335%, 98.224%, 97.650%和98.260%,均符合太阳观测需求,为下一步接收机的设计和信号处理提供了依据。  相似文献   

19.
为实现宽频带电磁环境实时测量,基于Roach II开发平台,开发设计了数字频谱仪,实时带宽10 MHz~2 GHz,动态范围达到55 dB。首先,分析了数字频谱仪开发设计理念和模块参数设置,实现快速扫描模式、脉冲监测模式的测试功能。其次,通过频率响应、动态范围、线性度等关键指标测量及分析,并与商用频谱仪测量结果对比,确定该数字频谱仪具有相对准确的测试精度,可应用于射电望远镜台站宽带实时频谱监测及瞬态信号分析。  相似文献   

20.
基于VHF频段射电天文干涉阵列的天线,研究地网以及不同环境对天线辐射特性包括增益、方向图、谐振点等参数的影响。结果表明,无地网条件下,天线在干燥土壤和沙地的增益分别是3.06 dB和1.44 dB,且存在明显的旁瓣和后瓣;天线在潮湿土壤和沙地的增益分别是4.33 dB和4.25 dB。增加地网后,天线在干燥土壤和沙地的增益分别是4.87 dB和4.97 dB,潮湿土壤和沙地分别是4.39 dB和4.40 dB,方向图不存在明显的后瓣和旁瓣,谐振点稳定在27.0 MHz和69.5 MHz处,且在此之间的频段上,驻波比均满足银河噪声限制条件。由此可以得出结论:在干燥土壤和沙地上铺设地网时,VHF天线性能最好,噪声最低,这对大规模的VHF天线阵列的基础构建环境选择至关重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号