首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2   总被引:3,自引:0,他引:3  
The variability of Atlantic Meridional Overturning Circulation (AMOC) in the pre-industrial control experiment of the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) was investigated using the model outputs with the most stable state in a 512-yr time window from the total 1500-yr period of the experiment. The period of AMOC in FGOALS-g2 is double peaked at 20 and 32 years according to the power spectrum, and 22 years according to an auto-correlation analysis, which shows very obvious decadal variability. Like many other coupled climate models, the decadal variability of AMOC in FGOALS-g2 is closely related to the convection that occurs in the Labrador Sea region. Deep convection in the Labrador Sea in FGOALS-g2 leads the AMOC maximum by 3-4 years. The contributions of thermal and haline effects to the variability of the convection in three different regions [the Labrador, Irminger and Greenland-Iceland- Norwegian (GIN) Seas] were analyzed for FGOALS-g2. The variability of convection in the Labrador and Irminger Seas is thermally dominant, while that in the colder GIN Seas can be mainly attributed to salinity changes due to the lower thermal expansion. By comparing the simulation results from FGOALS-g2 and 11 other models, it was found that AMOC variability can be attributed to salinity changes for longer periods (longer than 35 years) and to temperature changes for shorter periods.  相似文献   

2.
Interannual variation in summer rainfall over South China (SC) was investigated on the monthly timescale.It was found that monthly rainfall from May to August exhibits different features of variation,and the amounts are basically independent of each other.There is a significant negative correlation,however,between May and July SC rainfall,which is partially related to the developing phases of ENSO events.It was also found that stronger (weaker) lower-tropospheric winds over SC and the upstream parts are responsible for more (less) SC rainfall in every month from May to August.Despite this monthly consistent enhancement of horizontal winds,the wind anomalies exhibit distinct differences between May-June and July-August,due to the remarkable change in climatological winds between these two periods.More SC rainfall is associated with a lower-tropospheric anticyclonic anomaly over the SCS and the Philippine Sea in May and June,but with a cyclonic anomaly centered over SC in July and August.  相似文献   

3.
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions.  相似文献   

4.
The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) E1-Nifio. During EP E1-Nino, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP EI-Nifio, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP EI-Nino, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) oczurs less frequently in EP EI-Nino years, while cyclonic wave breaking (CWB) occurs more frequently in CP EI-Nino years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP Ei-NiNo. When AWB events occur less frequently over the North Pacific during EP EI-Nino, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopoie high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP EI-Nino conditions, and over North America under EP EI-Nino condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of EI-Nino.  相似文献   

5.
A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions of precipitation from the most recent model run and from earlier runs,all at the same forecast valid time.This lagged average forecast (LAF) method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean.Our analyses of the Equitable Threat Score,the Hanssen and Kuipers Score,and the frequency bias indicate that the LAF using five members at time-lagged intervals of 6 h improves 6-15 day forecasts of precipitation frequency above 1 mm d-1 and 5 mm d-1 in many regions of China,and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h between ensemble members.In particular,significant improvements are seen over regions where the frequencies of rainfall days are higher than about 40%-50% in the summer season; these regions include northeastern and central to southern China,and the southeastem Tibetan Plateau.  相似文献   

6.
The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F~rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.  相似文献   

7.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

8.
A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex.Such an impact is robust because of a qualitative consistency among the five AGCMs used.However,a significant difference exists in the modeled strengths,particularly in the stratosphere,with those in three of the AGCMs (CCM3,CAM3,and GFS) being four to five times as strong as those in the two other models (GFDL AM2,ECHAM5).As to which case reflects reality is an important issue not only for quantifying the role of tropical ocean warming in the recent modest recovery of the ozone hole over the Antarctic,but also for projecting its future trend.This issue is addressed in the present study through comparing the models' climatological mean states and intrinsic variability,particularly those influencing tropospheric signals to propagate upward and reach the stratosphere.The results suggest that differences in intrinsic variability of model atmospheres provide implications for the difference.Based on a comparison with observations,it is speculated that the impact in the real world may be closer to the modest one simulated by GFDL AM2 and ECHAM5,rather than the strong one simulated by the three other models (CCM3,CAM3 and GFS).In particular,IOW during the past 50 years may have dynamically induced a 1.0℃ warming in the polar lower stratosphere (~100 hPa),which canceled a fraction of radiative cooling due to ozone depletion.  相似文献   

9.
The aim of the present study was to identify multi-decadal variability (MDV) relative to the current centennial global warming trend in available observation data.The centennial global wanning trend was first identified in the global mean surface temperature (STgm) data.The MDV was identified based on three sets of climate variables,including sea surface temperature (SST),ocean temperature from the surface to 700 m,and the NCEP and ERA40 reanalysis datasets,respectively.All variables were detrended and low-pass filtered.Through three independent EOF analyses of the filtered variables,all results consistently showed two dominant modes,with their respective temporal variability resembling the Pacific Decadal Oscillation/Inter-decadal Pacific Oscillation (PDO/IPO) and the Atlantic Multi-decadal Oscillation (AMO).The spatial structure of the PDO-like oscillation is characterized by an ENSO-like structure and hemispheric symmetric features.The structure associated with the AMO-like oscillation exhibits hemispheric asymmetric features with anomalous warm air over Eurasia and warm SST in the Atlantic and Pacific basin north of 10°S,and cold SST over the southern oceans.The Pacific and Atlantic MDV in upper-ocean temperature suggest that they are mutually linked.We also found that the PDO-like and AMO-like oscillations are almost equally important in global-scale MDV by EOF analyses.In the period 1975-2005,the evolution of the two oscillations has given rise to strong temperature trends and has contributed almost half of the STgm warming.Hereon,in the next decade,the two oscillations are expected to slow down the global warming trends.  相似文献   

10.
Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.  相似文献   

11.
利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)发展的耦合的气候系统模式FGOALS-s2工业革命前控制试验结果研究了大西洋经向翻转流(Atlantic Meridional Overturning Circulation,AMOC)的年代际变率及其物理机制。传统AMOC是利用深度坐标下的质量流函数来表征,本文通过对密度坐标下49.5°N的AMOC指数与其余纬度的AMOC指数作相关分析,发现AMOC的变化有从深水形成区向南传播的过程,且密度坐标下的AMOC变率在北大西洋高纬度明显大于低纬度。分析进一步表明,模式模拟的AMOC具有年代际振荡,周期约为70年。这个低频振荡主要是由与AMOC变化相关的温度和盐度的变化与海表风场之间的相互作用引起,具体机制如下:格陵兰-冰岛-挪威海有异常强的海表风场,导致蒸发增强,继而使海表盐度增加,深水形成增多,从而使AMOC增强。AMOC加强后,会使得向北的热量和盐度输送增加,减弱此处的经向温度梯度,风场随之减弱,从而完成位相的反转。  相似文献   

12.
于雷  郜永祺  王会军 《大气科学》2009,33(1):179-197
利用卑尔根海洋-大气-海冰耦合气候模式(Bergen Climate Model, 简称BCM), 研究在北冰洋及北欧海淡水强迫增强的背景下, 大西洋经向翻转环流(Atlantic Meridional Overturning Circulation, 简称AMOC)的响应及其机制, 着重讨论了海表热力性质、北大西洋深层水 (North Atlantic Deep Water, 简称NADW) 的生成率、 海洋内部等密度层间的垂直混合 (Diapycnal Mixing, 简称DM) 以及大气风场等物理过程随AMOC的响应所发生的时间演变特征。结果显示, 在持续150年增强 (强度为0.4 Sv) 的淡水强迫下 (淡水试验, FW1), AMOC的强度表现为前50年的快速减弱和在接下来100年中的逐渐恢复。同时, 在淡水试验的前50年北大西洋高纬度海表盐度 (Sea Surface Salinity, 简称SSS) 减小, 海水密度降低, 冬季对流混合减弱, 导致NADW生成率快速减弱; 在接下来的100年中, 尽管增强的淡水强迫依然维持, 由于海洋内部自身的调节和海气相互作用, 导致了AMOC的逐渐恢复。恢复机制可以概括为: (1) 随着向南的NADW的减少, 大西洋中低纬度海水垂直层结逐渐减弱, DM随之逐渐增强, 有利于中低纬度海盆内深层水的上升; (2) 南半球西风应力增强与东风应力的减弱及北半球东风的增强使得大西洋向北的埃克曼体积通量净传输恢复; (3) 大西洋向北的盐度传输逐渐恢复及次极地回旋区降水的减弱, 导致SSS和NADW生成率的恢复, 与之对应, AMOC逐渐恢复。研究还发现, 淡水试验中, NADW的恢复主要以厄尔明格海 (Irminger Sea) 为主, 冬季北大西洋海平面气压场 (SLP) 呈现类似正北大西洋涛动 (NAO+) 的模态, 热带降水中心移到赤道以南, 大西洋热带SSS增强。  相似文献   

13.
于子棚  刘海龙  林鹏飞 《大气科学》2017,41(5):1087-1100
海洋中的潮汐混合对大西洋经圈翻转环流AMOC(Atlantic Meridional Overturning Circulation)模拟的影响是海洋环流模式研究的热点问题之一。本文采用IAP/LASG发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)及与海冰耦合模式进行了有无潮汐混合方案的试验,重点探讨了潮汐混合对AMOC强度模拟的影响。结果显示,引入潮汐混合后模拟的AMOC强度极大值比对照试验增加约1倍,更接近RAPID(Rapid Climate Change Programme)观测。而且,潮汐混合试验中模拟的AMOC上层环流深度(3200 m)比对照试验加深1000 m左右,同样更接近RAPID观测。海洋底部的垂直混合增强,使海洋层结变得更加不稳定,加强了北大西洋高纬地区,特别是拉布拉多海等地区的深对流,这是AMOC加强的直接原因。同时,潮汐混合试验中上层海洋环流也加强,增加了中低纬副热带高盐海水向高纬输送,使表层增密,海洋层结更加不稳定,也可以进一步增强AMOC。  相似文献   

14.
The response of the internal variability of the Atlantic Meridional Overturning Circulation (MOC) to enhanced atmospheric greenhouse gas concentrations has been estimated from an ensemble of climate change scenario runs. In the model, enhanced greenhouse forcing results in a weaker and shallower MOC with reduced internal variability. At the same time at 55°N between 0 and 1,000 m the overturning increases as a result of a change in the area of convection. In a warmer world, new regions of deepwater formation form further north due to the poleward retreat of the sea-ice boundary. The dominant pattern of internal MOC-variability consists of a monopole centered around 35°N. Due to anthropogenic warming this monopole shifts poleward. The shift is associated with a stronger relation between MOC-variations and heat flux variations over the subpolar gyre. In old convective sites (Labrador Sea) convection becomes more irregular which leads to enhanced heat flux variability. In new convective sites heat flux variations initially are related to sea-ice variations. When the sea-ice coverage further decreases they become associated with (irregular) deepwater formation. Both processes act to tighten the relation between subpolar surface heat flux variability and MOC-variability, resulting in a poleward shift of the latter.  相似文献   

15.
利用2个关于大西洋经向翻转流(Atlantic Meridional Overturning Circulation,AMOC)的指数:AMOC指数(15oN~65oN、深度为500 m以下的AMOC的最大值)和AMOC扩展指数(15oN~65oN、深度为2000~2500m的AMOC的最大值),研究了耦合模式FGOALS-g2(Grid-point Version 2 of Flexible Global Ocean-AtmosphereLand System Model)中的AMOC在CMIP5(Coupled Model Intercomparison Project Phase 5)的3个典型浓度路径(Representation Concentration Pathways,RCP)(RCP2.6、RCP4.5和RCP8.5分别对应于2100年时490、650和1370 ppm的CO2浓度水平)下的响应问题,发现:在RCP2.6和RCP4.5浓度路径下,2006~2040年时间段内AMOC指数和AMOC扩展指数都呈现快速下降的趋势,2041~2100年时间段内AMOC指数逐渐恢复,AMOC扩展指数基本维持不变;在RCP8.5浓度路径下,2006~2100年时间段内AMOC指数和AMOC扩展指数都表现出快速下降的趋势。通过分析FGOALS-g2中北大西洋深水的成因发现:3个典型浓度路径下AMOC的长期变化趋势主要受到GIN(Greenland–Iceland–Norwegian)海域的深水形成率的调控,而AMOC的年代际尺度的变化则主要受到Labrador海域深水形成率的控制。同时揭示了:由于北大西洋2000 m深度附近的层结稳定性在RCP2.6和RCP4.5下(相比于1980~2005年)提高了30%~40%,使得由AMOC指数恢复产生的深水无法继续下沉,从而导致AMOC扩展指数没有出现恢复的现象。  相似文献   

16.
The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic–European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC.  相似文献   

17.
俞永强  宋毅 《大气科学》2013,37(2):395-410
在工业革命以来全球长期增暖趋势背景下,全球平均表面气温还同时表现出年代际变化特征,二者叠加在一起使得全球平均气温在某些年份增暖相对停滞(如1999~2008年)或者增暖相对较快(如1980~1998年).利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的耦合气候模式FGOALS-s2历史气候和典型路径浓度(RCPs)模拟试验结果研究了可能造成全球增暖的年代际停滞及加速现象的原因,特别是海洋环流对全球变暖趋势的调制作用.该模式模拟的全球平均气温与观测类似,即在长期增暖趋势之上,还叠加了显著的年代际变化.对全球平均能量收支分析表明,模拟的气温年代际变化与大气顶净辐射通量无关,意味着年代际表面气温变化可能与能量在气候系统内部的重新分配有关.通过对全球增暖加速和停滞时期大气和海洋环流变化的合成分析及回归分析,发现全球表面气温与大部分海区海表温度(SST)均表现出几乎一致的变化特征.在增暖停滞时期,SST降低,更多热量进入海洋次表层和深层,使其温度增加;而在增暖加速时期,更多热量停留在表层,使得大部分海区SST显著增加,次表层海水和深海相对冷却.进一步分析表明,热带太平洋表层和次表层海温年代际变化主要是由于副热带—热带经圈环流(STC)的年代际变化所致,然后热带太平洋海温异常可以通过风应力和热通量强迫作用引起印度洋、大西洋海温的年代际变化.在此过程中,海洋环流变化起到了重要作用,例如印度尼西亚贯穿流(ITF)年代际异常对南印度洋次表层海温变化起到关键作用,而大西洋经圈翻转环流(AMOC)则能直接影响到北大西洋深层海温变化.  相似文献   

18.
This paper is a review of the recent development of researches on the stability of the Atlantic meridional overturning circulation (AMOC). In particular, we will review recent studies that attempt to best assess the stability of the AMOC in the past, present, and future by using a stability indicator related to the freshwater transport by the AMOC. These studies further illustrate a potentially systematic bias in the state-of-the-art atmosphere-ocean generM circulation models (AOCCMs), in which the AMOCs seem to be over-stabilized relative to that in the real world. This common model bias in the AMOC stability is contributed, partly, to a common tropical bias associated with the double intertropical convergence zone (ITCZ) in most state-of-the- art AOGCMs, casting doubts on future projection of abrupt climate changes in these climate models.  相似文献   

19.
It has been reported recently that the simulated Atlantic meridional overturning circulation(AMOC) using the coupled Bergen climate model(BCM) showed initial intensity declines followed by gradual recoveries over a 150-year enhanced freshwater input experiment.Stratification-dependent oceanic diapycnal mixing has been hypothesized as a reason for the simulated recovery of the AMOC.This study investigated the role of diapycnal mixing in transient responses of simulated AMOCs.Our results showed that stratification-dependent diapycnal mixing can cause stronger upwelling of deep water in the tropical Atlantic than that produced under conditions of fixed diapycnal mixing.Moreover,simulated AMOCs were more sensitive to active stratification-dependent diapycnal mixing than fixed mixing.However,stratification-dependent diapycnal mixing cannot be conclusively singled out as the critical cause of the recoveries of simulated AMOCs under enhanced-freshwater inputs.  相似文献   

20.
The Interannual Variability of Climate in a Coupled Ocean-Atmosphere Model   总被引:2,自引:0,他引:2  
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation model of the Institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that by the corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 year integrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAP AGCM, i.e., no serious ‘climate drift’ occurs in the CGCM simulation. A comparison of the results from AGCM and CGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM is much greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and North Atlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not exist in the AGCM simulation.The interannual variability of climate may be classified into two types: one is the variation of the annual mean, another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type of variability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannual variability are found to have different spatial and temporal characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号