首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the benefits of high-frequency (HF) radar currents for oil spill modeling and trajectory analysis of floating objects are analyzed. The HF radar performance is evaluated by means of comparison between a drifter buoy trajectory and the one simulated using a Lagrangian trajectory model. A methodology to optimize the transport model performance and to calculate the search area of the predicted positions is proposed. This method is applied to data collected during the Galicia HF Radar Experience. This experiment was carried out to explore the capabilities of this technology for operational monitoring along the Spanish coast. Two long-range HF radar stations were installed and operated between November 2005 and February 2006 on the Galician coast. In addition, a drifter buoy was released inside the coverage area of the radar. The HF radar currents, as well as numerical wind data were used to simulate the buoy trajectory using the TESEO oil spill transport model. In order to evaluate the contribution of HF radar currents to trajectory analysis, two simulation alternatives were carried out. In the first one, wind data were used to simulate the motion of the buoy. In the second alternative, surface currents from the HF radar were also taken into account. For each alternative, the model was calibrated by means of the global optimization algorithm SCEM-UA (Shuffled Complex Evolution Metropolis) in order to obtain the probability density function of the model parameters. The buoy trajectory was computed for 24 h intervals using a Monte Carlo approach based on the results provided in the calibration process. A bivariate kernel estimator was applied to determine the 95% confidence areas. The analysis performed showed that simulated trajectories integrating HF radar currents are more accurate than those obtained considering only wind numerical data. After a 24 h period, the error in the final simulated position improves using HF radar currents. Averaging the information from all the simulated daily periods, the mean search and rescue area calculated using HF radar currents, is reduced by approximately a 62% in comparison with the search area calculated without these data. These results show the positive contribution of HF radar currents for trajectory analysis, and demonstrate that these data combined with atmospheric forecast models, are of value for trajectory analysis of oil spills or floating objects.  相似文献   

2.
We report a series of ongoing large-scale experiments to studythe interaction of a snow avalanche with a dam and a row of mounds which are of a comparable height to the flow depth.The experimental results indicate that the behaviour of thesupercritical flow around the obstacles is governed by the large-scale properties of the flowing avalanche rather than micro-scaleproperties of the granular current.The experiments show that, similarly to smaller-scale experimentswith glass particles, the avalanche detaches from the top of the dam or mound and forms a coherentairborne jet, which can be modelled as a two dimensional ballistic projectile with negligible air resistance.We study the two parameters that define the trajectory of thejet, namely the speed at which the jet is launched from the top of the obstacle and the deflection of the jet by the obstacle, and compare the resultswith a theory for the deflection of a jet of an ideal fluid.  相似文献   

3.
Water jet flow has many usages in the field of management and water resource operation that can be applied in mixing, dilution and aerification. The current study has calculated the flow velocity, length and height of jet penetration area (jet and main flow are of opposite directions) by the use of methods of finite element (FEM) and finite volume (FVM) and k–ε model. In order to evaluate and verify this turbulent model, the results of the numerical model have been compared with the experimental results. This model has been studied for consideration of various jet flow velocities and thicknesses. The conclusions have indicated that the length and the height of the penetration area have linear relationship with jet flow velocity; therefore, as the jet flow velocity increases, the length of jet penetration increases as well. The comparison of the results of numerical method with the experimental data have demonstrated that the FVM holds less convergence time and better results compared with FEM.  相似文献   

4.
The multivariate Gaussian random function model is commonly used in stochastic hydrogeology to model spatial variability of log-conductivity. The multi-Gaussian model is attractive because it is fully characterized by an expected value and a covariance function or matrix, hence its mathematical simplicity and easy inference. Field data may support a Gaussian univariate distribution for log hydraulic conductivity, but, in general, there are not enough field data to support a multi-Gaussian distribution. A univariate Gaussian distribution does not imply a multi-Gaussian model. In fact, many multivariate models can share the same Gaussian histogram and covariance function, yet differ by their patterns of spatial continuity at different threshold values. Hence the decision to use a multi-Gaussian model to represent the uncertainty associated with the spatial heterogeneity of log-conductivity is not databased. Of greatest concern is the fact that a multi-Gaussian model implies the minimal spatial correlation of extreme values, a feature critical for mass transport and a feature that may be in contradiction with some geological settings, e.g. channeling. The possibility for high conductivity values to be spatially correlated should not be discarded by adopting a congenial model just because data shortage prevents refuting it. In this study, three alternatives to a multi-Gaussian model, all sharing the same Gaussian histogram and the same covariance function, but with different continuity patterns for extreme values, were considered to model the spatial variability of log-conductivity. The three alternative models, plus the traditional multi-Gaussian model, are used to perform Monte Carlo analyses of groundwater travel times from a hypothetical nuclear repository to the ground surface through a synthetic formation similar to the Finnsjön site in Sweden. The results show that the groundwater travel times predicted by the multi-Gaussian model could be ten times slower than those predicted by the other models. The probabilities of very short travel times could be severely underestimated using the multi-Gaussian model. Consequently, if field measured data are not sufficient to determine the higher-order moments necessary to validate the multi-Gaussian model — which is the usual situation in practice — other alternative models to the multi-Gaussian one ought to be considered.  相似文献   

5.
The mechanisms governing dispersion processes in the northern Yucatan coast are investigated using a barotropic numerical model of coastal circulation, which includes wind-generated and large scale currents (i.e. Yucatan Current). This work provides the foundations for studying the dispersion of harmful algal blooms (HABs) in the area. Modelling experiments include effects of climatic wind (from long term monthly mean NCEP reanalysis), short term wind events (from in situ point measurements), and Yucatan Current (YC) characteristics. Its magnitude was approximated from published reports, and its trajectory from geostrophic current fields derived from altimeter data. These provided a range of real and climatic conditions to study the routes in which phytoplankton blooms may travel. The 2-D model results show that a synthetic and conservative bloom seeded in the Cabo Catoche (CC) region (where it usually grows), moves along the coast to the west up to San Felipe (SF), where it can either move offshore, or carry on travelling westwards. The transport to the west up to SF is greatly influenced by the trajectory, intensity and proximity of the YC jet to the peninsula, which enhances the westward circulation in the Yucatan Shelf. Numerical experiments show that patch dispersion is consistently to the west even under the influence of northerly winds. When the YC flows westward towards the Campeche Bank, momentum transfer caused by the YC jet dominates the dispersion processes over wind stress. On the other hand, when it flows closer to Cuba, the local processes (i.e. wind and bathymetry) become dominant. Coastal orientation and the Coriolis force may be responsible for driving the patch offshore at SF if external forcing decreases.  相似文献   

6.
A boosted regression tree model was developed to predict pH conditions in three dimensions throughout the glacial aquifer system of the contiguous United States using pH measurements in samples from 18,386 wells and predictor variables that represent aspects of the hydrogeologic setting. Model results indicate that the carbonate content of soils and aquifer materials strongly controls pH and, when coupled with long flowpaths, results in the most alkaline conditions. Conversely, in areas where glacial sediments are thin and carbonate-poor, pH conditions remain acidic. At depths typical of drinking-water supplies, predicted pH >7.5—which is associated with arsenic mobilization—occurs more frequently than predicted pH <6—which is associated with water corrosivity and the mobilization of other trace elements. A novel aspect of this model was the inclusion of numerically based estimates of groundwater flow characteristics (age and flowpath length) as predictor variables. The sensitivity of pH predictions to these variables was consistent with hydrologic understanding of groundwater flow systems and the geochemical evolution of groundwater quality. The model was not developed to provide precise estimates of pH at any given location. Rather, it can be used to more generally identify areas where contaminants may be mobilized into groundwater and where corrosivity issues may be of concern to prioritize areas for future groundwater monitoring.  相似文献   

7.
Selenium transport and transformation were simulated in a soil column. A one‐dimensional dynamic mathematical and computer model is formulated to simulate, selenate, selenite, selenomethionine, organic selenium, and gaseous selenium. This computer model is based on the mass balance equation, including convective transport, dispersive transport, surface adsorption, oxidation and reduction, volatilization, chemical and biological transformation. The mathematical solution is obtained by the finite difference implicit method. The model was verified by comparison of model results with experimental measurements and also using mass balance calculations in each time step of calculation. For example after 4 days of simulation, the simulated value of adsorbed selenate for depth of 20 cm is 0·2 µmol kg?1 and the measured value is 0·25 µmol kg?1. Therefore simulated results are in good agreement with measured values. With this study and its results the distribution of various forms of selenium in soil column to ground water table can be predicted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Narrow jets of rapid westward ion drifts were registered near the plasmapause projection at the F-region altitudes on the Cosmoc-184 satellite and were called “a polarization jet.” In this work, the effect of this polarization jet on the ionospheric structure has been studied, using a three-dimensional model of the high-latitude ionosphere, when strong local magnetospheric electric fields were originated. The calculations indicated that a narrow trough in the latitudinal variations in the electron density at the F-region maximum was formed in the zone where the electric field was switched on. This trough was more pronounced in the early evening hours, when the electron background density was still high, and was less distinct at low back-ground levels during premidnight hours. A comparison of the calculations and experimental data indicated that they were in good agreement with one another, which made it possible to state that the polarization jet was the main mechanism by which narrow electron density troughs were formed in the subauroral ionosphere.  相似文献   

9.
A method of visualizing structures in closed chaotic flows out of homogenous particle distributions is presented in the example of models of a meandering jet. To this end, the system will be leaked or opened up by defining a region of the flow, so that a particle is considered to be escaped if it leaves this region. By applying this method to an ensemble of nonescaped tracers, we are able to characterize mixing processes by visualizing the converging and stretching filamentations (stable and unstable manifolds) in the flow without using additional mathematical tools. The possibility of applying the algorithm to analyze buoy data, and a comparison with the finite time manifolds are discussed.  相似文献   

10.
—Several major features of the interaction of the Somali jet with the Western Ghat Mountains have been observed. These include a pressure ridge, strong vertical motions, and occurrences of highly reflective cloud and heavy rainfall rates along the west coast of India. A triple nested regional weather prediction model has been used to investigate the dynamic interaction between the Somali jet and the Western Ghat Mountains. Two numerical experiments were conducted; one with the topography of western India and the other without. In the experiment without topography, the Western Ghat Mountains were removed from the innermost domain. The results for the innermost domain in the two experiments were analyzed and compared. The results from the simulation with topography captured several of the observed features of the Somali jet interaction with the Western Ghat Mountains. The simulation without topography failed to reveal these features. The results suggest that the blocking effect of the Western Ghats plays an important role in the prediction of the rainfall over the west coast of India.  相似文献   

11.
Izvestiya, Physics of the Solid Earth - Abstract—This work generalizes the classical mathematical model of fluid and gas filtration in a fractured-porous medium. It results in a generalized...  相似文献   

12.
13.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   

14.
The nodal domain integration method is applied to a one-dimensional advection—diffusion mathematical model without a source term. Comparison of the resulting numerical model to the well known Galerkin finite element, subdomain, and finite difference domain models indicates that a single numerical statement can be developed which includes the Galerkin finite element, subdomain, and finite difference models as special cases.  相似文献   

15.
A Model for Deepwater Oil/Gas Blowouts   总被引:1,自引:0,他引:1  
When gas is released in deepwater, the high pressure and low temperature can convert the gases into hydrates, which are buoyant. As these hydrates travel upwards they will encounter regions of lower pressure and can decompose into free gas. The presence or absence of hydrates has a significant impact on the behaviour of the jet/plume due to the alteration of the buoyancy. The free gas may dissolve in water. This paper describes a computer model developed to simulate the behaviour of oil and gas released from deepwater locations in the ocean. The model integrates the hydrodynamics and thermodynamics of the jet/plume with kinetics and thermodynamics of hydrate formation/decomposition. Model formulation and comparison of results with laboratory data for hydrates is presented. Scenario simulations show the behaviour of oil/gas under different deepwater conditions.  相似文献   

16.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

17.
A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. Our investigation is focused on the near field, extending from the exit nozzle until about 30 s after the wake is generated, in the vortex phase. This study was performed by using an integral model and a numerical simulation for two large civil aircraft: a two-engine Airbus 330 and a four-engine Boeing 747. The influence of the wing-tip vortices on the dilution ratio (defined as a tracer concentration) shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. In the early wake, the engine jet location (i.e. inboard or outboard engine jet) has an important influence on the mixing rate. The plume streamlines inside the vortices are subject to distortion and stretching, and the role of the descent of the vortices on the maximum tracer concentration is discussed. Qualitative comparison with contrail photograph shows similar features. Finally, tracer concentration of inboard engine centreline of B-747 are compared with other theoretical analyses and measured data.  相似文献   

18.
This study aims at comparing and contrasting two different models for sand transport by currents in a shallow sea to illustrate the effect of velocity veering. The first model uses the Bailard-type formulation, which allows calculation of erosion/deposition rates at a fixed location on the sea floor via the divergence of horizontal sediment fluxes. The second model is a semi-analytical 2.5-dimensional model, which takes into account the time lag between erosion and deposition events and the velocity veering within the sediment-laden (nepheloid) layer caused by the Coriolis force. The velocity veering implies that the direction of the sediment flux is generally different from the direction of the surface flow. The latter model was designed for rapid, semi-analytical computations of sediment transport, using flow fields from 2-DH numerical models. The two models use a matching set of parameters to provide identical values for the bottom stress and suspended sediment load for a uniform steady current at any given surface velocity. The two models were compared in a range of sand grain sizes 50–500 m and current speeds up to 1 m s–1 for an idealised square region (100 × 100 km) of a shelf sea of constant depth. The erosion/deposition patterns and suspension load were examined in three settings: (1) uniform steady flow, (2) straight jet, (3) meandering jet. It was found that both the rates and, in particular, the spatial distribution of the areas of erosion/deposition differ significantly between the models in cases (2) and (3). This difference can be attributed to additional flux divergence due to velocity veering. A comparison of model results with field data, collected at Long Island Shelf, supports the relevance of Coriolis-induced veering of currents on the direction of the sediment flux.Responsible Editor: Jens Kappenberg  相似文献   

19.
Summary The calibrated variance-covariance matrices of the harmonic geopotential coefficients of the recent combined model JGM 2 has been tested and verified by independent crossover altimetry from TOPEX/Poseidon and ERS 1 using the Latitude Lumped Coefficients in the southern oceans area. Although orbits are not yet available for these missions with other recent models for which error matrices have been released, by comparison with JGM 2 results and field differences we also confirm that the error matrices for the satellite model GRIM 4S4p and the combined data model JGM 3 are also generally valid. Projections of these matrices for a variety of inclinations show that many unused orbits of even moderate altitude (≈ 800 km) will still yield trajectory crossover errors at a level of many tens of centimeters even with the latest orbitgeopotential models.  相似文献   

20.
A genetic algorithm rainfall intensity (GARI) model has been developed and used to predict the intensities for given return period. It is a one‐step solution procedure that may not require any mathematical transformation. The problem formulation is given and the genetic algorithm solution of the problem is presented. The results show that the proposed GARI model can be used to solve the rainfall intensity–duration–frequency relations with lowest mean‐squared error between measured and predicted intensities. Predicted intensities are in good agreement between measured and predicted values for given return periods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号