首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
核电厂地震安全性评价中的地震构造法,要求鉴定发震构造和划分地震构造区,在以往实践中,发震构造鉴定往往基于地表活动断裂构造,且表征为线状震源.当存在较强非随机分布的地震活动且难以找到清晰的地表活动断裂构造形迹时,地震构造法就难以合理地表现这些地震的危险性.本文以云南滇中大姚—姚安发震构造鉴定为例,探讨了在地表活动构造形迹不清,中强地震活动性较强的滇中大姚—姚安地区,采用面状发震构造来表征地震危险性的方法,讨论了在地震构造法中采用面状发震构造的必要性、鉴定思路和方法,并建议在今后的核工程地震危险性评价地震构造法中应充分考虑面状发震构造的应用.  相似文献   

2.
Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.  相似文献   

3.
After the April 6th 2009 L’Aquila earthquake (M w 6.3), where 306 people died and a further 60,000 were displaced, seismic microzoning investigations have been carried out for towns affected by a macroseismic intensity equal to or greater than 7 MCS. Based upon seismotectonic data, historical seismicity and strong motion records, we defined input spectra to be used in the numerical simulations of seismic microzoning in four key municipalities, including the town of L’Aquila. We adopted two main approaches: uniform hazard response spectra are obtained by a probabilistic seismic hazard assessment introducing some time-dependency for individual faults on the study area; a deterministic design spectrum is computed from magnitude/distance pairs extracted by a stationary probabilistic analysis of historical intensities. The uniform hazard spectrum of the present Italian building code represents the third, less restrictive, response spectrum to be used for the numerical simulations in seismic microzoning. Strong motions recordings of the main shock of the L’Aquila sequence enlighten the critical role played by both the local response and distances metric for sites located above a seismogenic fault; however, these time-histories are compatible with the uncertainties of a deterministic utilization of ground motion predictive equations. As recordings at very near field are rare, they cannot be neglected while defining the seismic input. Disaggregation on the non-Possonian seismotectonic analysis and on the stationary site-intensity estimates reach very similar results in magnitude-distance pairs identification; we interpret this convergence as a validation of the geology-based model by historical observations.  相似文献   

4.
We developed a seismic hazard model for Taiwan that integrates all available tectonic, seismicity, and seismic hazard information in the region to provide risk managers and engineers with a model they can use to estimate earthquake losses and manage seismic risk in Taiwan. The seismic hazard model is composed of two major components: a seismotectonic model and a ground-shaking model. The seismotectonic model incorporates earthquakes that are expected to occur on the Ryukyu and Manila subduction zones, on the intermediate-depth Wadati-Benioff seismicity zones, on the active crustal faults, and within seismotectonic provinces. The active crustal faults include the Chelungpu fault zone, the source of the damaging MW 7.6 Chi-Chi earthquake, and the Huangchi-Hsiaoyukeng fault zone that forms the western boundary of the Taipei Basin. The ground-shaking model uses both US, worldwide, and Taiwanese attenuation relations to provide robust estimates of peak ground acceleration and response spectral acceleration on a reference site condition for shallow crustal and subduction zone earthquakes. The ground shaking for other site conditions is obtained by applying a nonlinear soil-amplification factor defined in terms of the average shear-wave velocity in the top 30 m of the soil profile, consistent with the methodology used in the current US and proposed Taiwan building codes.  相似文献   

5.
K-means cluster analysis and seismicity partitioning for Pakistan   总被引:2,自引:2,他引:0  
Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and an area from 23.00° to 39.00°N and 59.00° to 80.00°E. A threshold magnitude of 5.2 is considered for K-means cluster analysis. The current study uses the traditional metrics of cluster quality, in addition to a seismic hazard contextual metric to attempt to constrain the preferred number of clusters found in the data. The spatial distribution of earthquakes from the catalogue was used to define the seismic clusters for Pakistan, which can be used further in the process of defining seismogenic sources and corresponding earthquake recurrence models for estimates of seismic hazard and risk in Pakistan. Consideration of the different approaches to cluster validation in a seismic hazard context suggests that Pakistan may be divided into K?=?19 seismic clusters, including some portions of the neighbouring countries of Afghanistan, Tajikistan and India.  相似文献   

6.
Surat, the financial capital of Gujarat, India, is a mega city with a population exceeding five millions. The city falls under Zone III of the Seismic Zoning Map of India. After the devastating 2001 Bhuj earthquake of Mw 7.7, much attention is paid towards the seismic microzonation activity in the state of Gujarat. In this work, an attempt has been made to evaluate the seismic hazard for Surat City (21.170?N, 72.830?E) based on the probabilistic and deterministic seismic hazard analysis. After collecting a catalogue of historical earthquakes in a 350?km radius around the city and after analyzing a database statistically, deterministic analysis has been carried out considering known tectonic sources; a further recurrence relationship for the control region is found out. Probabilistic seismic hazard analyses were then carried out for the Surat region considering five seismotectonic sources selected from a deterministic approach. The final results of the present investigations are presented in the form of peak ground acceleration and response spectra at bed rock level considering the local site conditions. Rock level Peak Ground Acceleration (PGA) and spectral acceleration values at 0.01?s and 1.0?s corresponding to 10% and 2% probability of exceedance in 50 years have been calculated. Further Uniform Hazard Response Spectrum (UHRS) at rock level for 5% damping, and 10% and 2% probability of exceedance in 50 years, were also developed for the city considering all site classes. These results can be directly used by engineers as basic inputs in earthquake-resistant design of structures in and around the city.  相似文献   

7.
Modern earthquake loss models make use of earthquake catalogs relevant to the seismic hazard assessment upon seismicity and seismotectonic analysis. The main objective of this paper is to investigate a recently compiled catalog (National Institute of Meteorology or INM catalog: 412-2011) and to generate seismic hazard maps through classical probabilistic seismic hazard assessment (PSHA) and smoothed-gridded seismicity models for Tunisia. It is now established with the local earthquake bulletin that the recent seismicity of Tunisia is sparse and moderate. Therefore, efforts must be undertaken to elaborate a robust hazard analysis for risk assessment and seismic design purposes. These recommendations follow the recently published reports by the World Bank that describe the seismic risk in Tunis City as being beyond a tolerable level with an MSK intensity level of VII. Some attempts were made during the past two decades to assess the seismic hazard for Tunisia and they have mostly failed to properly investigate the historical and instrumental seismicity catalog. This limitation also exists for the key aspect of epistemic and random uncertainties impact on the final seismic hazard assessment. This study also investigates new ground motion prediction equations suitable for use in Tunisia. The methodology applied herein uses, for the first time in PSHA of Tunisia, seismicity parameters integrated in logic tree framework to capture epistemic uncertainties through three different seismic source models. It also makes use of the recently released version of OpenQuake engine; an open-source tool for seismic hazard and risk assessment developed in the framework of the Global Earthquake Model.  相似文献   

8.
论发震构造特性在潜在震源区参数确定中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
周本刚 《地震地质》2004,26(4):750-760
发震构造特性是潜在震源区划分及其地震年发生率确定的重要依据。潜在震源区除了反映“未来具有发生破坏性地震的地区”的内涵外,还应反映高震级档地震具有相似复发特征的涵义。由于在地震活动性参数统计单元内,有一些具有不同本底地震的活动构造块体,为更好地反映地震活动的空间不均匀性,考虑潜在震源区的三级划分是有必要的。通过分析潜在震源区内高震级档地震的复发特征,计算预测时段内潜在震源区的高震级档地震的发震概率,采用预测时段内概率等效转换获得地震年平均发生率的方法,有助于在中国地震危险性分析框架内考虑潜在震源区的强震复发特性。另外,文中还对潜在震源区内特征地震次级震级档频度不足的特性和发震构造上强震非均匀性在地震危险性分析中的应用问题进行了探讨  相似文献   

9.
利用西南地区多年来积累的地震安全性评价工作成果,借助地理信息系统MapInfo强大的空间信息表达能力,使在MapInfo平台上构建西南地区区域地震构造图数据库成为可能。文中使用空间数据库与属性数据库分开设计的方法,采用多个层次、多种基本类型、多表关联的数据库格式,在MapInfo平台上构建了西南地区区域地震构造图数据库  相似文献   

10.
The Seismic Intensity Zoning Map of China(1990)was based on the probabilistic method of seismic hazard analysis.In compiling the map,the characteristics of inhomogeneity of earthquake distribution both in space and time in China are considered sufficiently,and some necessary modifications in the model of seismic hazard analysis are carried out.Based on the analysis of the seismic activity and seismotectonic environment,26 seismic provinces are divided first as the statistical elements of the seismicity analysis; the seismic potential source areas are then divided in the seismic provinces.The 733 potential source areas with various upper limit magnitudes have been divided in the country.According to the reliable time domain of earthquake data with various magnitude intervals,the b values in magnitude-frequency relationship are calculated in the seismic provinces.According to the analysis of the inhomogeneity of seismicity distribution both in space and time,the annual average occurrence rates of the eart  相似文献   

11.
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3–8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal–India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs.  相似文献   

12.
在新编全国地震区划图潜在震源区划分工作中,采用了三级划分的技术思路,即在地震统计区内先划分出地震构造区,以控制地震统计区内地震构造和地震活动的差异性,然后,在地震构造区内再进行潜在震源区划分。地震构造区划分是新编全国地震区划图潜在震源区划分工作中的一个关键环节。本文论述了地震构造区的定义、作用、划分原则和依据等。介绍了中国东部地区地震构造区划分方案,并以东北地震区和华南沿海地震带为例,对地震构造区划分方案进行了详细论述。  相似文献   

13.
马集遐 《中国地震》1994,10(3):251-261
本文依据深部地球物理场、区域大地构造、地表活动断裂、地震活动等,划分了中国大陆的地震构造带,同时分析了地震构造带的活动特征和孕震构造条件,在此基础上,具体地把地震构造带的概念应用于地震危险区分析之中,探讨了地震危险区及地震前兆异常与地震构造带的关系,本文提出以地震构造带研究作为地震监测和预报工作的基础,将地震构造带作为系统性的活动构造条件应用于地震危险区划分之中。  相似文献   

14.
三河-涞水-灵寿新生地震构造带   总被引:5,自引:0,他引:5  
高战武  吕晓健  吴昊  米素婷 《地震》2004,24(3):21-28
通过对地震、 地质和地球物理等资料的分析, 发现华北平原西北部于三河、 涞水、 灵寿一线存在一条地震构造带。 该地震构造带在华北地区公元1000年以来的第三地震活跃期内地震活动最为强烈, 记有8级地震1次, 6级多地震3次和数次5级左右的地震。 这条地震构造带斜穿渤海湾盆地内早第三纪形成的大兴隆起和冀中、 北京等坳陷, 是一条晚第三纪以来新发育的构造带。 此带的发现使华北平原的地震构造格局更加完善。  相似文献   

15.
华北地区的共轭地震构造带   总被引:10,自引:3,他引:10  
本文采用小地震活动图象和4.0级(Ms)以上地震震源机制资料的构造分析方法,得到一幅华北地区震源构造在地面的投影分布图,它显示4条NNE-NE向和1条NWW-NW向地震构造带交切成的共轭剪切构造格架。每条地震构造带又由一系列共轭剪切构造组成。由发生在带内的5个大震序列共轭破裂特征发现,共轭地震构造的孕震与控震作用是地震构造带形成的机制。  相似文献   

16.
In engineering seismic hazard probabilistic analysis, physical constraints are generally overlooked. We formulate such constraints for the general case of a site within an annular seismogenic zone. This configuration provides a first approximation of seismic hazard analysis within a broad zone undergoing crustal deformation; such zones are a common expression of continental tectonics. Applications are restricted to medium size earthquakes (Ms < 7). The formulation is applied to two cases reflecting the mid-plate (case I) and plate boundary (case II) seismotectonic environments. It is found that, for a given strain rate and for an upper bound magnitude of 6 3/4, the extreme hazard in both the environments is the same but of different character. In the plate boundary example, it is associated with widespread ground deformation while in the mid-plate example, it involves more intense ground motion. On the other hand, if the upper bound magnitude is 5 3/4, the extreme hazard is likely to be an order of magnitude less in case I than in case II. Moreover, when the extreme hazard is associated with singular conditions generated by a single fault, the assumption of a Poissonian process may not be safe for earthquake resistant design decisions.  相似文献   

17.
汪梦甫 《地震工程学报》1993,15(1):72-74,88
本文将潜在震源的不确定性分为震源类型与震源几何尺度的不确定性两类,用逻辑树方法概括了潜在震源区划分的各种可能方案,并据此给出了考虑潜在震源区划分不确定性的地震危险性分析的计算步骤。用本文的方法对上海市地震危险性进行了分析。  相似文献   

18.
新地震区划图潜在震源区划分的主要技术特色   总被引:13,自引:7,他引:6  
简要介绍了新地震区划图潜在震源区划分方案的形成过程,重点分析了潜在震源区三级划分、东西部地区潜在震源区划分技术途径的差异、不同级别活动块体边界带对高震级潜在震源区划分的控制作用、发震构造模型及其在潜在震源区划分中的应用等主要技术特色.共划分出29个地震带、77个地震构造区和1199个潜在震源区.与中国地震动参数区划图(2001)中综合方案相比,东西部地区潜在震源区的个数都有较大的增加,其中东部地区体现在震级上限6.0、6.5和7.0级的中强潜在震源区个数的明显增加,与划分工作中加强了该地区中强地震发震构造的判识研究相关;而西部地区体现在震级上限7.5和8.0级的高震级潜在震源区个数的大幅度增加,与划分工作中注重了活动块体边界带高震级潜在震源区划分,以及强调应用发震构造模型指导潜在震源区划分的技术特色相协调.  相似文献   

19.
—The maximum likelihood estimation of earthquake hazard parameters has been made in the Himalayas and its surrounding areas on the basis of a procedure which utilizes data containing complete files of the most recent earthquakes. The entire earthquake catalogue used covers the period from 1900–1990. The maximum regional magnitude M max?, the activity rate of the seismic event λ, the mean return period R of earthquakes with a certain lower magnitude M max≥ m along with their probability of occurrence, as well as the parameter b of of Gutenberg Richter magnitude-frequency relationship, have been determined for six different seismic zones of the Himalayas and its vicinity. It is shown that in general the hazard is higher in the zone NEI and BAN than the other four zones. The high difference of the b parameter and the hazard level from zone to zone reflect the high seismotectonic complexity and crustal heterogeneity.  相似文献   

20.
新编制的地震动参数区划图采用了潜在震源区三级划分方案,以体现背景地震活动空间分布的不均匀性,并在地震构造区内归纳出统一的地震构造模型.本文根据西南地区潜在震源区三级划分的成果,分析了龙门山地震统计区内的龙门山和成都地震构造区的基本特征,历史地震活动强度及频度,主要活动构造的构造变形样式,建立了地震构造区的发震构造模型,确定了构造区的本底地震及划分构造源的地震构造标志.同时,提出了确定背景源空间分布函数的简单方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号