首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A combined petrographic/X-ray/electron microprobe and energy dispersive system investigation of sandstone cuttings from borehole Elmore # 1 near the center of the Salton Sea Geothermal Field has revealed numerous regular variations in the composition, texture, mineralogy and proportions of the authigenic layer silicate minerals in the temperature interval 185° C (411.5 m depth) to 361° C (2,169 m). At temperatures near 190° C, dolomite/ankerite+calcite-bearing sandstones contain an illite/mixed layer phase with 10% expandable layers (dolomite/ankerite zone). In shale, the percentage of expandable layers in the mixed layer phase changes from 10–15% at 185° C to 5% at 210° C (494 m). In the interval 250° C (620 m) to 325° C (1,135 m), the calcite+pyrite+epidote-bearing sandstones contain a layer silicate assemblage of chlorite and illite (chlorite-calcite zone). In the shallower portions of this metamorphic zone, the illite contains 0–5% expandable layers, while at depths greater than 725 m (275° C) it is completely free of expandable layers. On increasing temperature, the white mica shows regular decreases in SiIV, Mg and Fe, and increase in AlIV, AlVI, and interlayer occupancy, as it changes gradually from fine-grained illite (=textural sericite) to coarse-grained recrystallized phengitic white mica. In the same interval, chlorite shows decreases in AlVI and octahedral vacancies and an increase in total Mg+Fe. The sandstones range from relatively unmodified detrital-textured rocks with porosities up to 20% and high contents of illite near 250° C to relatively dense hornfelsic-textured rocks with trace amounts of chlorite and phengite and porosities near 5% at 325° C. Numerous complex reactions among detrital (allogenic) biotite, chlorite, and muscovite, and authigenic illite and chlorite, occur in the chlorite-calcite zone.Biotite appears, and calcite disappears, at a temperature near 325° C and a depth of 1,135m. The biotite zone so produced persists to 360° C in sandstone, at which temperature orthoclase disappears and andradite garnet appears at a depth near 2,155 m. Throughout the biotite zone and into the garnet zone, the biotite undergoes compositional changes that are very similar to those observed in illite/phengite in the chlorite-calcite zone, including increases in interlayer occupancy, AlIV, AlVI, and Ti, and decreases in F, SiIV, and Mg/Fet+Mg, on increasing temperature. Biotite thus changes from a siliceous, K-deficient biotite at the biotite isograd to a typical low-grade metamorphic biotite at temperatures near 360° C. Minor amounts of talc appear with biotite at the biotite isograd in sandstone, while actinolite appears in both sandstone and shale at temperatures near 340° C (1,325 m). Chlorite completely disappears from sandstone at temperatures of approximately 350° C (1,500 m), and diminishes abruptly in amount in the more chloritic shales at the same depth.  相似文献   

2.
Sandstone alterations triggered by fire-related temperatures   总被引:1,自引:1,他引:0  
The aim of the study was to identify and describe changes in two different sandstone types when undergoing different environmental and extreme temperature regimes to assess the possibility of finding insolation weathering and how these sandstones would behave during and after a fire. The first step was the simulation in the laboratory of temperature regimes up to 60 °C which would correspond to extreme events that could be found in insolation cycles even in Central Europe and the second one was the temperature above 200 °C simulating in laboratory conditions the thermal regime of a potential fire situation at temperatures up to 200, 400, 600 and 800 °C. Heating the samples above 400 °C led to gradual changes in mineral composition, colour, surface roughness and physical properties reaching, eventually, total rock breakdown through spalling and granular disaggregation. The different behaviour of sandstones exposed to high temperatures is mainly caused by their different mineral composition with various ratios of minerals that are more or less chemically stable at high temperatures as well as by the differences in the porosity.  相似文献   

3.
The Kanmon Group (Lower Cretaceous) is a non-marine sequence in the Inner Zone of southwest Japan and is divided into the lower Wakino (lacustrine) and the upper Shimonoseki (fluvial) subgroups. Major diagenetic changes in this group are compaction, iron-oxide cementation, calcite cementation and grain replacement, quartz overgrowth and pore-fill cementation, illite authigenesis, chlorite pore-fill cementation and grain replacement, albitization of feldspar, and grain replacement by pyrite. Two subgroups of the Kanmon Group present no significant differences in general diagenetic features, paragenetic sequence, or the degree of diagenetic changes despite differences in depositional environments (lacustrine vs. fluvial) and stratigraphic positions. However, some differences are recognized in the content and chemistry of authigenic minerals caused by different sandstone framework compositions. The content of authigenic clay minerals is higher in sandstones of the Shimonoseki Subgroup containing abundant volcanic rock fragments. In addition, the composition of chlorite, the most abundant authigenic clay mineral in Kanmon sandstones, is Mg-rich in the volcanoclastic Shimonoseki sandstones, compared to an Fe-rich variety in Wakino sandstones. The original sandstone composition played a significant role in pore-water composition and diagenetic reactions.The Wakino sandstones lost most of its porosity by compaction, whereas Shimonoseki sandstones are only compacted in the vicinity of the basin-bounding fault. The weakly compacted Shimonoseki sandstones, instead, were largely cemented by pore-filling calcite during early diagenesis; cementation prevented compaction during further burial. The Kanmon Group sediments were heated to about 300 °C based on illite crystallinity values.  相似文献   

4.
The stability of synthetic jadeite-acmite pyroxene coexisting with albite and quartz has been determined at 600, 700, and 900° C. The end-member reaction: albite = jadeite + quartz has been determined to lie between 1.67 and 1.70 GPa at 600° C, 1.88 and 1.90 GPa at 700° C, and 2.44 and 2.48 GPa at 900° C. Jd78Acm22 + quartz is stable above 1.58, 1.78, and 2.33 GPa at 600, 700, and 900° C, respectively. Jd61Acm39 + quartz is stable above 1.47, 1.67, and 2.18 GPa at 600, 700, and 900° C, respectively. Addition of as much as 40% of acmite component in jadeite extends pyroxene stability by less than 300 MPa at 900° C. Unit-cell parameters measured for synthetic jadeite-acmite pyroxenes indicate linear volume-composition relations. The data are consistent with ideal mixing in jadeite-acmite solutions.  相似文献   

5.
Wetting weakening of tertiary sandstones—microscopic mechanism   总被引:3,自引:0,他引:3  
The micromechanism accounting for wetting weakening of tertiary sandstones was studied. It was found that intragranular fracture prevails for all dry sandstones. However, when the sandstone is wet, intergranular fracture occurs for Type B sandstones. Therefore, one sandstone from Type A sandstones, MS1, and another from Type B, TK, were selected to further investigate the nature of the matrix. It was found that (1) for both sandstones, the major mineral components of the matrix are illite and kaolinite except that the MS1 sandstone has more chlorite; (2) leaching of matrix induced an increase of porosity and consequently results in leaching softening; and (3) among the mineral composition, chlorite is easiest to be dissolved and leached out and induces a more significant increase of porosity, which, in turn, results in a more significant leaching softening.  相似文献   

6.
The mineral transformations undergone by high sulfur coal ash were studied. An X-ray diffraction (XRD) experiment was carried out to reproduce experimentally the mineral transformations produced during coal combustion in coal-fired power stations. We have verified that the anhydrite is the main crystalline phase that contains sulfur in the solid combustion waste from 500°C until its decomposition at 1060±10°C. Thus, this calcium sulfate is the main crystalline phase involved in the sulfur retention in the combustion wastes at high temperatures. Therefore, a considerable proportion of the sulfur would not be emitted into the atmosphere at temperatures lower than 1060°C. Taking as a reference the annual coal consumption of the Teruel Mining District (6 million tons), the mean sulfur content and the anhydrite content at 900°C, it was shown that the SO2 emissions could be reduced by approximately 13 percent (83,000 ton/yr) provided that the combustion temperature was 900°C.  相似文献   

7.
The relationship between diagenetic chlorite rims and depositional facies in deltaic strata of the Lower Cretaceous Missisauga Formation was investigated using a combination of electron microprobe, bulk geochemistry and X‐ray diffraction data. The succession studied comprises several stacked parasequences. The delta progradational facies association includes: (i) fluvial or distributary channel sandstones (some with tidal influence); (ii) thick‐bedded delta‐front graded beds of sandstone interpreted as resulting from fluvial hyperpycnal flow during floods and storms; and (iii) more distal muddier delta‐front and prodeltaic facies. The transgressive facies association includes lag conglomerate, siderite‐cemented muddy sandstone and mudstone, and bioclastic sandy limestone. Chlorite rims are absent in the fluvial facies and best developed in thick sandstones lacking mudstone baffles. Good quality chlorite rims are well correlated with Ti in bulk geochemistry. Ti is a proxy for Fe availability, principally from the breakdown of abundant detrital ilmenite (FeTiO3). Under conditions of sea floor diagenesis, the abrupt decrease in sedimentation rate at transgressive surfaces caused progressive shallowing of the sulphate‐depletion level and of the overlying Eh‐controlled diagenetic zones, resulting in conditions suitable for diagenetic formation of berthierine to migrate upwards through the packet of reservoir sandstones. This early diagenetic berthierine suppressed silica cementation and later recrystallized to chlorite. Thick euhedral outer chlorite rims were precipitated from formation water in sandstone lacking muddy baffles on this chlorite substrate and inhibited late carbonate cementation. This study thus shows that the preservation of porosity by chlorite rims is a two‐stage process. Rapidly deposited delta‐front turbidite facies create early diagenetic conditions that eventually lead to the formation of chlorite rims, but the best quality chlorite rims are restricted to sandstones with high permeability during burial diagenesis.  相似文献   

8.
The spatial distribution of clay minerals in sandstones, which may both enhance or degrade reservoir quality, is poorly understood. To address this, clay mineral distribution patterns and host‐sediment properties (grain size, sorting, clay fraction abundance and bioturbation intensity) have, for the first time, been determined and mapped at an unprecedentedly high‐resolution in a modern estuarine setting (Ravenglass Estuary, UK). Results show that the estuary sediment is dominated by illite with subordinate chlorite and kaolinite, although the rivers supply sediment with less illite and significantly more chlorite than found in the estuary. Fluvial‐supplied sediment has been locally diluted by sediment derived from glaciogenic drift deposits on the margins of the estuary. Detailed clay mineral maps and statistical analyses reveal that the estuary has a heterogeneous distribution of illite, chlorite and kaolinite. Chlorite is relatively most abundant on the northern foreshore and backshore and is concentrated in coarse‐grained inner estuary dunes and tidal bars. Illite is relatively most abundant (as well as being most crystalline and most Fe–Mg‐rich) in fine‐grained inner estuary and central basin mud and mixed flats. Kaolinite has the highest abundance in fluvial sediment and is relatively homogenous in tidally‐influenced environments. Clay mineral distribution patterns in the Ravenglass Estuary have been strongly influenced by sediment supply (residence time) and subsequently modified by hydrodynamic processes. There is no relationship between macro‐faunal bioturbation intensity and the abundance of chlorite, illite or kaolinite. Based on this modern‐analogue study, outer estuarine sediments are likely to be heavily quartz cemented in deeply‐buried (burial temperatures exceeding 80 to 100°C) sandstone reservoirs due to a paucity of clay grade material (<0·5%) to form complete grain coats. In contrast, chlorite‐enriched tidal bars and dunes in the inner estuary, with their well‐developed detrital clay coats, are likely to have quartz cement inhibiting authigenic clay coats in deeply‐buried sandstones.  相似文献   

9.
Ultramafic rocks dredged from the Islas Orcadas Fracture Zone, along the SW Indian Ocean Ridge (6° E and 54° S), show evidence of progressive hydration beginning at temperatures greater than 600° C (and perhaps as high as 900° C) and continuing to less than 50° C. There are two principal types of alteration present in the ultramafic rocks, both of which are the result of hydration reactions. The first type of alteration involves hydration of original clinopyroxene, orthopyroxene and olivine to amphibole, talc, secondary olivine, and serpentine. The second is a vein type of alteration and results in the formation of veins of amphibole, chlorite, talc and serpentine. — The alteration appears to be episodic. The sequence of events suggested by the petrography is: 1) clinopyroxene altering to amphibole; 2) orthopyroxene altering to talc, or talc + olivine; 3) supersolvus hornblende veining; 4) coexisting actinolite + hornblende veining; 5) chlorite, chlorite + actinolite, or chlorite + secondary clinopyroxene veining; 6) talc veining; 7) serpentine veining; and 8) pervasive serpentinization. — The alteration fluid is most likely seawater. It is suggested that the high temperature alterations may reflect seawater circulation into the upper mantle.  相似文献   

10.
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges.The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ∼250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ∼300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C.Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples.Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.  相似文献   

11.
Electron microprobe analyses were made on diagenetic chlorites in sandstones and mudstones from two deep wells according to the petrographic character of the chlorite occurrence: as pseudomorphic phases, rims on quartz or glauconite or as distinct phases in the clay matrix. Chlorite compositions do not depend upon crystallization site (reacting phases) making it apparent that new chlorites can form in an approach to chemical equilibrium at or near the surface (40° C, 1 km depth). Comparison of this data with that for late diagenetic and early metamorphic chlorites indicates that the compositional range for different grains in the same thin section is similar for the samples throughout the 40°–270° C temperature span. Compositional range decreases upon further metamorphism.Al content appears to be a more reliable indicator of temperature variations than other substitutions in the chlorite structure. The clay mineral assemblage which indicates sedimentary facies affects the trends in composition (Al increase or decrease) as a function of temperature. The octahedral site occupancy show a general increase in going from diagenesis to metamorphic conditions in pelitic rocks. The range of Fe-Mg ratios seems to depend more on the chemistry of each sample than the temperature of formation of the minerals.  相似文献   

12.
砂岩早期核心式碳酸盐胶结作用的成像测井证据   总被引:3,自引:0,他引:3  
钟广法  马在田 《沉积学报》2001,19(2):239-244
早期碳酸盐胶结作用是库车坳陷新生界浅埋藏河流相砂岩内除机械压实外目前正在进行的主要成岩作用,高分辨率电阻率成像测井资料为研究其特征及成因提供了重要的地球物理证据。在电阻率成像测井图像上,早期碳酸盐胶结物呈圆形、椭圆形或不规则斑块状、葡萄状等形态出现,多数顺层理方向分布,其产状有孤立状或分散状斑块、断续胶结纹层和连续胶结纹层等。它们可以发育于砂岩层顶部或底部,也可以与疏松未胶结或弱胶结砂岩呈互层或夹层状交替分布。早期碳酸盐胶结物的沉淀采取核心式胶结模式,即胶结物首先围绕少数核心沉淀,呈斑块状逐渐向外增生,直至从各个核心生长出来的碳酸盐胶结斑块相互靠近和连生导致砂岩层被完全胶结为止。砂体或砂层被碳酸盐胶结的过程遵循由外向内 (由砂体边缘向砂体中心 )、由高渗透纹层向低渗透纹层、由局部胶结核心向周围孔隙增生的规律.  相似文献   

13.
In an external vacuum and at temperatures between 900° C and 1650° C internal graphitisation takes place on or around mineral inclusions in diamond, and appears to be responsible for similar features previously reported in diamond from several localities. Several mechanisms are proposed and discussed for internal graphitisation at temperatures as low as 900° C: it is proposed that at low external pressures CO2 exsolves from inclusions and causes internal graphitisation. The results also indicate that immediately after pressure release arising from volcanic breakthrough of kimberlites of different geological ages at several localities in West and South Africa, the temperature was not in excess of 800° C to 900° C in certain regions of the diatremes.  相似文献   

14.
The calcite-aragonite transition,reinvestigated   总被引:6,自引:0,他引:6  
The calcite-aragonite equilibrium has been investigated between 200 and 600° C both in a carefully calibrated hydrothermal apparatus and in a piston-cylinder device of high precision. The equilibrium pressure is 5 kb at 180° C, 7 kb at 300° C, 9 kb at 400° C, and 11 kb at 480° C.The calcite-aragonite transition boundary which has been bracketed is continuously curved between 300 and 500° C and is more or less straight above and below this temperature range. It is shown that the calcite I-calcite II reaction is probably a second (and not a first) order transition.The experimental result shows that aragonite may already be formed out of calcite at a depth of 15 km if the temperature is not much higher than 100° C. The calcitearagonite and the albite-jadeite-quartz curves intersect at about 750° C and 20 kb. There is a P-T-field (up to 3.5 kb broad) where aragonite and albite coexist.  相似文献   

15.
Granitic rocks deformed by cataclasis and mylonitization on macro- (a few meters) and micro- (thin section) scales are found at depths down to 6.6km in the Siljan impact structure in central Sweden. Granites near fault planes exhibit: (1) fracturing, kinking, fragmentation, and recrystallization of feldspars into pure K and Na endmember varieties, (2) fragmentation, polygonization and development of undulose extinction in quartz, and (3) kinking, appearance of wavy extinction and alteration of biotite, chlorite, amphibole, and alteration of ilmenite and magnetite. Whole-rock chemical analyses of deformed and undeformed rocks show that deformed rocks are enriched in SiO2 (by about 5 wt.%) and depleted in other oxides by variable percentages. Apart from Rb and Co, the concentrations of other trace elements (including Ba, Sr, Zn, Zr, Pb, Cd, Cu, Cr, Ni, V, U, Th, La, and Li) are lower in deformed relative to undeformed rocks. Mass-balance calculations for a 1000 cm3 model granite which were based on modal mineralogy, whole-rock chemistry, and mineral analyses suggest that the break down of primary biotite, chlorite, and amphibole in deformed zones released elements to circulating fluids. These calculations also indicate liberation of water and a doubling of porosity (from 1 to 2%) during the deformation episodes. Later precipitation of minerals in shear and tension fractures reduced this porosity. Within the upper 2000 m of the Gravberg-1 well, the formation of fracture-filling minerals (smectite, calcite, hematite, chlorite, and albite) is impact-related, and was favored by active circulation of meteoric water. Fracture-filling minerals in the upper 2000 m of the borehole formed at temperatures of 70° to 200°C. Between depths of 2000 and 3500 m, fracture-filling mineral assemblages (dominated by Fe–Mg chlorite, sphene and epidote) suggest formation temperatures in the range of 150° to 300°C. Occurrence of pumpellyite and prehnite in some altered biotite and chlorite of the deformed zones between 3500 and 5500 m suggest preimpact metamorphism and formation temperature above 150°C. Below 5500 m, the mineral assemblages in the fractures are dominated by quartz, sphene, epidote, and some muscovite and chlorite, indicating a temperature range between 300° and 450°C. One of the possible origins for the CH4 and H2 gases detected in the Gravberg-1 well is a combination of hydrogen ions released by decomposition of hydrated silicates (biotite, chlorite, hornblende) with carbon. The presence of iron in the deformed granitic rocks prevented the resulting CH4 from being oxidized.  相似文献   

16.
Partition coefficients (DBemineral/melt) for beryllium between hydrous granitic melt and alkali feldspars, plagioclase feldspars, quartz, dark mica, and white mica were determined by experiment at 200 MPa H2O as a function of temperature (650-900°C), activity of Be in melt (trace levels to beryl saturation), bulk composition, and thermal run direction. At trace levels, Be is compatible in plagioclase of An31 (1.84 at 700°C) and muscovite (1.35 at 700°C) but incompatible in biotite (0.39-0.54 from 650-800°C), alkali feldspar (0.38-0.19 from 680-850°C), quartz (0.24 at 800°C), and albite (0.10 at 750°C). The partition coefficients are different at saturation of the melt in beryl: lower in the case of plagioclase of An31 (0.89 at 700°C), muscovite (0.87 at 700°C), biotite (0.18-0.08 from 675-800°C), alkali feldspar (0.18-0.14 from 680-700°C), and quartz (0.17-0.08 from 750-800°C), but higher in the case of albite (0.37 at 750°C).With other data sources, these new partition coefficients were utilized to track, first, the distribution of Be between aluminous quartzofeldspathic source rocks and their anatectic melts, and second, the dispersion or concentration of Be in melt through igneous crystal fractionation of different magma types (e.g., S-type, I-type) up to beryl-saturated granitic pegmatites and, finally, into their hydrothermal aureoles. Among the rock-forming minerals, cordierite, calcic oligoclase, and muscovite (in this order) control the fate of Be because of the compatibility of Be in these phases. In general, beryl-bearing pegmatites can arise only after extended crystal fractionation of large magma batches (to F, fraction of melt remaining, ≤0.05); granitic magmas that originate from cordierite-bearing protoliths or that contain large modal quantities of calcic oligoclase will not achieve beryl saturation at any point in their evolution.  相似文献   

17.
华池油田华152区长3油层组储层以粉细粒长石砂岩、岩屑长石砂岩为主,发育多种孔隙类型,主要有粒间溶孔、粒内溶孔、剩余粒间孔、晶间微孔隙和构造缝,其中粒间溶孔是长3油层组储层的主要孔隙类型。主要成岩矿物为伊利石、绿泥石、伊/蒙混层、高岭石、方解石、白云石、石英等。根据成岩作用的矿物岩石学标志,将研究区成岩阶段界定为中成岩A期。压实和胶结作用破坏了砂岩的原生孔隙结构,而溶蚀作用形成次生孔隙,有效地改善了砂岩的孔隙结构。  相似文献   

18.
鄂尔多斯盆地临兴地区上古生界致密砂岩储集层中矿物组成多样、孔隙结构复杂且黏土矿物含量高,直接影响储层改造和开发效果。文章基于X 衍射、铸体薄片、气测孔渗、压汞和敏感性实验,系统研究了储层敏感性及其影响因素。结果表明研究区砂岩中石英和岩屑含量高,长石含量较低,以岩屑砂岩、岩屑石英砂岩、长石岩屑砂岩和石英砂岩为主。黏土矿物主要为伊利石、高岭石、绿泥石以及伊/蒙混层;储层普遍低孔低渗,孔隙结构较差。速敏以太原组最强,山西组最弱,与伊利石+绿泥石含量正相关,高岭石含量负相关。水敏下石盒子组最强,太原组最弱,与伊/蒙混层含量正相关。盐敏与水敏有类似特点,与伊/蒙混层含量表现出正相关。酸敏山西组最强,下石盒子组最弱,与绿泥石和铁白云石矿物含量正相关。碱敏性山西组最强,太原组最弱,受长石、石英和高岭石含量影响。相关认识有助于指导研究区钻井、压裂等施工工艺选择和排采控制。  相似文献   

19.
Chlorite rims are the most common type of authigenic chlorite in sandstones, and attract particular attention because they are always found in high-quality sandstone reservoirs. This study researches chlorite rims in sandstones of the Chang 9 oil-bearing member of the Triassic Yanchang Formation in the Ordos basin, China. Using casting thin sections, a scanning electron microscope and porosity–permeability data, the following issues were addressed: (1) the formation stage of chlorite rims, (2) the relationship of chlorite rim formation to other diagenetic features, and (3) the relationship of chlorite rims with sandstone reservoir quality. From the results, the following conclusions can be drawn: (1) chlorite rims form during the A–B phase of eodiagenesis, (2) chlorite rims cannot enhance the mechanical strength of rocks and their ability to resist compaction, (3) the reason that chlorite rims inhibit quartz secondary enlargement is a change in pH and silica concentration leading to the cessation of quartz growth. However, chlorite rims have no relationship with the formation of later idiomorphic authigenic quartz; (4) chlorite rims cannot enhance the reservoir quality of sandstone, but can be an indicator of high primary intergranular porosity.  相似文献   

20.
王桂茹 《世界地质》2010,29(3):442-449
不同温度(100℃、150℃和200℃)地层水对含片钠铝石砂岩的改造作用研究显示,随着温度升高,砂岩的溶解程度逐渐增强,样品中片钠铝石的稳定性逐渐减弱。在片钠铝石溶解的同时,200℃时样品表面有高钠长石和绿泥石生成,且通过X-射线衍射分析发现,在150℃和200℃时有某种未知的碳酸盐矿物生成,生成量随温度升高而增大。100℃时片钠铝石的微弱溶解及150℃和200℃时碳酸盐矿物的生成表明,在地层条件下以片钠铝石等碳酸盐矿物形式捕获的CO2能够稳定存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号