共查询到19条相似文献,搜索用时 93 毫秒
1.
利用遥感技术动态监测城镇扩展己成为一个重要的研究领域和应用方向。本论文基于多源多时相遥感影像和地形数据,以福建漳州市区为示范区,探讨城镇建筑用地扩张遥感动态监测的方法。作者认为基于ASTER影像,综合利用非监督分类、多时相植被指数、城镇建筑用地的地形分布等知识建立分类决策规则,可以有效提取城镇建筑用地信息,准确度不低于90%。同时提出利用城镇建筑用地时空分布知识、多时相植被指数知识,改进TM三指数城镇建筑用地提取方法的思路,最终提取的城镇建筑用地信息满足城镇建筑用地动态变化分析的精度要求。 相似文献
2.
3.
基于支持向量机的遥感影像分类比较研究 总被引:2,自引:0,他引:2
王小明;毛梦祺;张昌景;许勇 《东北测绘》2013,(4):17-20,23
支持向量机是建立在统计学习理论基础上的一种新的人工智能算法,较好地克服了传统分类方法中存在的小样本、非线性、过学习、高维数、局部极小点等问题,是一种极具潜力的遥感影像分类算法。本研究采用Landsat-5的TM影像,用支持向量分类法对影像进行分类,分析了支持向量机不同参数组合情况下的分类精度,并对支持向量分类法与传统分类方法进行了比较,发现支持向量分类算法具有参数选择范围宽,不要求对待分类区域地物光谱特征和影像分布特征具有先验知识,分类精度高等特点,对于在没有现场同步实测数据的区域进行精确的分类具有特别重要的价值。 相似文献
4.
针对现有库容遥感监测方法对无湖盆数据区域的湖泊动态库容难以直接测算问题,提出了未知湖泊水下地形数据的遥感湖泊动态库容监测方法。该方法通过多源遥感数据,匹配相对时相的湖泊面积和水位信息,构建并模拟湖盆DEM数据,据此来估算湖泊的动态库容。在算法实现上,首先采用分布迭代水体提取从遥感影像提取湖泊的多期动态边界;其次,从ICEsat GLAS激光测高数据中反演出湖泊的动态水位高程;第三,依据时间水位信息,通过邻近时相匹配,将水位高程赋给湖泊边界线,生成湖泊等水位线;第四,通过等水位线构建TIN(triangulated irregular network)和Kriging插值,得到模拟湖盆数字高程模型;最后,依据模拟湖盆DEM和水体面积分布、水位信息,计算湖泊动态库容。试验通过对博斯腾湖的多年动态库容监测与真实性检验,结果显示:最大误差为2.21×108 m3,最小误差为0.000 02×108 m3,平均误差为0.044×108 m3,均方根为0.59,相关系数达到0.99。 相似文献
5.
随着社会经济的飞速发展,土地利用类型也在随之发生变化.若要合理开发利用土地,对其变化信息的提取和研究也就显得极其重要.现如今,我国大面积开展地理国情监测项目,其中普遍涉及利用遥感手段获取土地利用信息并监测其变化情况.本文围绕地理国情监测项目中常用的几种遥感影像解译方法进行对比和分析,并探讨其各自的优缺点. 相似文献
6.
7.
本文首先讨论了赣北地区推覆构造四种主要的TM影像鉴别标志。在此基础上,通过对该地区数字镶嵌TM遥感影像的详细解译、分析,探讨了该区推覆构造的宏观分布格局。 相似文献
8.
9.
10.
高分辨率遥感影像分割方法研究 总被引:1,自引:0,他引:1
在遥感应用分析中,遥感影像分割是低层影像处理和中高层影像分析和理解的桥梁,是实现遥感影像信息自动提取的关键步骤,具有重要的意义。随着大量高分辨率遥感影像的出现,传统基于像素的影像处理方法已不能适应高分辨率遥感影像。近年来,国内外研究者们提出了面向对象影像的分析方法,而面向对象影像分析方法的关键就是影像分割,影像分割精度直接影响着高分辨率遥感信息提取和目标识别的精度。首先给出一般图像分割方法的综述;然后分析和总结了当前主要的高分辨率遥感影像分割方法,着重阐述了均值漂移、分形网络进化、马尔科夫随机场等分割方法的特点和研究现状;最后,对高分辨率遥感应用分析中影像分割方法的发展趋势进行了讨论与展望。 相似文献
11.
12.
高分一号(GF-1)是我国自主研发的第一颗高分辨率遥感卫星,其包含地物信息较为丰富,已应用于土地利用信息提取,但在水利工程库区土地利用调查方面研究较少。本文以峡江水利枢纽工程库区为例,首先对库区影像进行了基于RPC模型的正射校正、几何精纠正等预处理;然后针对GF-1的传感器响应特性,采用基于多元线性波段拟合的方法对多光谱与全色影像进行融合,该方法相对于传统分量替换法具有更好的融合性能;最后综合利用影像的光谱、纹理及形状等特征,采用面向对象的方法对融合后的库区影像进行了地类信息提取与分类精度评价。试验结果表明,融合影像可以有效提取水利工程库区的土地利用信息,总体分类精度达到87.9%,Kappa系数为0.836,能够满足库区土地利用调查和变化监测的要求。 相似文献
13.
14.
矢量C-V模型的高光谱遥感影像分割 总被引:1,自引:0,他引:1
高光谱遥感影像除了包含普通2维影像所具有的空间信息还包含了1维光谱信息,传统的针对2维影像的分割方法不能很好地应用于高光谱遥感影像。为此,本文提出一种能够同时处理多波段影像的高光谱遥感影像矢量C-V模型分割方法。首先选出高光谱遥感影像中目标与背景对比度较大的波段,并通过计算波段相关系数,去除其中的冗余信息形成新的波段组合,进而根据所确定的波段组合构建高光谱遥感影像矢量矩阵;在此基础上,构造基于该矢量矩阵的矢量C-V分割模型。模型中通过引入基于梯度的边缘引导函数,在保留传统C-V模型基于区域信息进行影像分割的基础上,利用影像的边缘细节信息,增强了模型在异质区域和复杂背景情况下对目标边缘的捕捉能力,提高了对高光谱遥感影像的分割精度和速度。最后利用HYPERION数据进行仿真实验,并将实验结果和传统C-V模型和相关方法进行了对比,结果表明,本文方法能够在短时间内有效地分割高光谱遥感影像,与传统方法相比,具有分割精度更高运算速度更快的特点。 相似文献
15.
D. S. Rathore Anju Choudhary P. K. Agarwal 《Journal of the Indian Society of Remote Sensing》2006,34(4):377-383
As per recommendations of Working Group for National Action for Reservoir Sedimentation Assessment, National Institute of
Hydrology has taken up study on sedimentation for 25 reservoirs in India during X plan period using remote sensing technique.
One such study for Hirakud reservoir in Mahanadi basin in Orissa for year 1999–2001 is described here. Reservoir’s original
utilizable and gross volumes were 5818 and 8136 M m3, respectively. Minimum draw down level (MDDL) and full reservoir level (FRL) for reservoir are 179.83 and 192.02 m, respectively.
Linear Imaging Self Scanning (LISS)- III data of Indian Remote Sensing Satellites (IRS) 1C and 1D, covering elevation range
between 180.68 and 191.89 m, were used. Rule based classification was applied to ‘water index’ and radiances of near infrared
band to determine water spread area. Revised live storage capacity was 4842 M m3. The silt index for the live storage area was 2.623 ha m (100 km2 year)-1 (0.376 % of live storage or 21.9 M m3 year-1). Total live storage lost in sedimentation was 984 M m3 (16.90 % of live storage). 相似文献
16.
17.
针对已有的围填海图斑提取方法精度不高、普适性不强、自动提取结果不理想等问题,该文提出了通过构建归一化差异水体指数(NDWI)进行围填海变化图斑自动提取的方法。以高分辨率QuickBird影像和HJ-1卫星影像为数据源,首先,根据研究区的用海类型进行5种易混淆地物的波谱特征分析;然后,根据水体与非水体的光谱特征差异,构建2009、2011年两个时相的NDWI指数;最后,将两时相NDWI指数影像进行空间相减,设置判断阈值,识别围填海变化图斑,并以目视提取结果作为依据验证其自动提取效果。对比分析结果表明:利用该文构建的两期NDWI指数可以将大部分围填海区域准确、自动地探测出来,可以将该方法纳入到沿海地区围填海变化监测的业务中。 相似文献
18.
19.
针对高光谱遥感图像易受噪声干扰,本文提出了一种基于非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)和核主成分分析KPCA(Kernel Principal Component Analysis)的去噪方法。首先对高光谱各波段图像进行NSCT分解;然后利用KPCA对NSCT系数进行处理,并在KPCA重构时依据各类噪声的特性选取合适的主成分;最后用处理过的系数进行逆变换得到去噪图像。实验结果表明,本文方法抑制了高光谱遥感图像中的噪声干扰,较完整地保留了原始数据的有效信息。 相似文献