首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ??target?? concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.  相似文献   

2.
A coupled land?Catmosphere model is used to explore the impact of seven commonly used canopy rainfall interception schemes on the simulated climate. Multiple 30-year simulations are conducted for each of the seven methods and results are analyzed in terms of the mean climatology and the probability density functions (PDFs) of key variables based on daily data. Results show that the method used for canopy interception strongly affects how rainfall is partitioned between canopy evaporation and throughfall. However, the impact on total evaporation is much smaller, and the impact on rainfall and air temperature is negligible. Similarly, the PDFs of canopy evaporation and transpiration for six selected regions are strongly affected by the method used for canopy interception, but the impact on total evaporation, temperature and precipitation is negligible. Our results show that the parameterization of rainfall interception is important to the surface hydrometeorology, but the seven interception parameterizations examined here do not cause a statistically significant impact on the climate of the coupled model. We suggest that broad scale climatological differences between coupled climate models are not likely the result of how interception is parameterized. This conclusion is inconsistent with inferences derived from earlier uncoupled simulations, or simulations using very simplified climate models.  相似文献   

3.
The effect of ocean mixed layer depth on climate is explored in a suite of slab ocean aquaplanet simulations with different mixed layer depths ranging from a globally uniform value of 50–2.4 m. In addition to the expected increase in the amplitude of the seasonal cycle in temperature with decreasing ocean mixed layer depth, the simulated climates differ in several less intuitive ways including fundamental changes in the annual mean climate. The phase of seasonal cycle in temperature differs non-monotonically with increasing ocean mixed layer depth, reaching a maximum in the 12 m slab depth simulation. This result is a consequence of the change in the source of the seasonal heating of the atmosphere across the suite of simulations. In the shallow ocean runs, the seasonal heating of the atmosphere is dominated by the surface energy fluxes whereas the seasonal heating is dominated by direct shortwave absorption within the atmospheric column in the deep ocean runs. The surface fluxes are increasingly lagged with respect to the insolation as the ocean deepens which accounts for the increase in phase lag from the shallow to mid-depth runs. The direct shortwave absorption is in phase with insolation, and thus the total heating comes back in phase with the insolation as the ocean deepens more and the direct shortwave absorption dominates the seasonal heating of the atmosphere. The intertropical convergence zone follows the seasonally varying insolation and maximum sea surface temperatures into the summer hemisphere in the shallow ocean runs whereas it stays fairly close to the equator in the deep ocean runs. As a consequence, the tropical precipitation and region of high planetary albedo is spread more broadly across the low latitudes in the shallow runs, resulting in an apparent expansion of the tropics relative to the deep ocean runs. As a result, the global and annual mean planetary albedo is substantially (20 %) higher in the shallow ocean simulations which results in a colder (7C) global and annual mean surface temperature. The increased tropical planetary albedo in the shallow ocean simulations also results in a decreased equator-to-pole gradient in absorbed shortwave radiation and drives a severely reduced (≈50 %) meridional energy transport relative to the deep ocean runs. As a result, the atmospheric eddies are weakened and shifted poleward (away from the high albedo tropics) and the eddy driven jet is also reduced and shifted poleward by 15° relative to the deep ocean run.  相似文献   

4.
Summary Simulated temperature and precipitation changes over western Europe for a scenario of doubled atmospheric concentrations of CO2 are presented. The simulations are performed using a Limited Area Model LAM (RegCM2) nested into a General Circulation Model (ECHAM3). Both model components are operated at very high spatial resolutions — approximately 120 km for the GCM and 20 km for the LAM; the LAM domain encompasses a region of 1100 × 1100 km squared. Climatologies for five January and five July periods have been simulated. Average surface (2 m) temperatures are found to increase by 1.4 K in winter (January) and 3.9 K in summer (July); this latter figure is, however, largely dependent on a positive bias in the summer temperature fields of the driving GCM. Average precipitation changes are generally small in absolute values, but exhibit considerable spatial variability. Large precipitation amounts are seen to be shifted towards higher elevations with a corresponding reduction in the upwind areas. The results are discussed taking into account the predictive skill of the modelling system, which is derived from comparing the simulated present day temperature and precipitation fields to the corresponding climatological information. A method is introduced to assess the reliability of climate scenario predictions — such as those discussed here — on the basis of this predictive skill.With 14 Figures  相似文献   

5.
Summary Illustrative examples are discussed of the interdecadal variability features of the regional climate change signal in 5 AOGCM transient simulations. It is shown that the regional precipitation change signal is characterized by large variability at decadal to multidecadal scales, with the structure of the variability varying markedly across regions. Conversely, the regional temperature change signal shows low interdecadal variability. Results are compared across scenarios, models and different realizations with the same model. Our analysis indicates that, at the decadal scale, linear scaling of the regional climate change signal by the global temperature change works relatively well for temperature but less so for precipitation. The nonlinear fraction of the climate change signal tends to decrease with the magnitude of the signal. The implications of interdecadal variability for the generation of regional climate change scenarios are discussed, in particular concerning the use of multi-experiment ensembles to produce such scenarios.  相似文献   

6.
Potential impacts of climate change on heavy rainfall events and flooding in the Australian region are explored using the results of a general circulation model (GCM) run in an equilibrium enhanced greenhouse experiment. In the doubled CO2 simulation, the model simulates an increase in the frequency of high-rainfall events and a decrease in the frequency of low-rainfall events. This result applies over most of Australia, is statistically more significant than simulated changes in total rainfall, and is supported by theoretical considerations. We show that this result implies decreased return periods for heavy rainfall events. The further implication is that flooding could increase, although we discuss here the many difficulties associated with assessing in quantitative terms the significance of the modelling results for the real world.The second part of the paper assesses the implications of climate change for drought occurrence in Australia. This is undertaken using an off-line soil water balance model driven by observed time series of rainfall and potential evaporation to determine the sensitivity of the soil water regime to changes in rainfall and temperature, and hence potential evaporation. Potential impacts are assessed at nine sites, representing a range of climate regimes and possible climate futures, by linking this sensitivity analysis with scenarios of regional climate change, derived from analysis of enhanced greenhouse experiment results from five GCMs. Results indicate that significant drying may be limited to the south of Australia. However, because the direction of change in terms of the soil water regime is uncertain at all sites and for all seasons, there is no basis for statements about how drought potential may change.  相似文献   

7.
 Four transient GCM experiments simulating the climatic response to gradually increasing CO2, and two equilibrium doubled CO2 experiments are compared. The zonally symmetric and asymmetric features of climate are both examined. Surface air temperature, sea level pressure, the 500 mb height and the relative topography between 500 and 1000 mb are analyzed. In the control simulations, the broad aspects of the present climate are in most cases well reproduced, although the stationary eddies tend to be less reliably simulated than the zonal means. However, the agreement between the four transient experiments on the geographical patterns of climate change is less impressive. While some zonally symmetric features, in particular the meridional distribution of surface air warming in the boreal winter, are rather similar in all models, the intermodel cross correlations for the zonally asymmetric changes are low. The agreement is largely restricted to some very general features such as more warming over the continents than over the oceans. The largest discrepancies between the two equilibrium-doubled CO2 experiments and the transient experiments are found at the high southern latitudes, in particular in the austral winter. To identify the most robust geographical patterns of change in the transient experiments, the standard t test is used to determine if the four-model mean change is significantly above or below the global mean. Received: 18 January 1996 / Accepted: 5 July 1996  相似文献   

8.
9.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

10.
A variable-grid atmospheric general circulation model, LMDZ, with a local zoom over southeast China is used to investigate regional climate changes in terms of both means and extremes. Two time slices of 30?years are chosen to represent, respectively, the end of the 20th century and the middle of the 21st century. The lower-boundary conditions (sea-surface temperature and sea-ice extension) are taken from the outputs of three global coupled climate models: Institut Pierre-Simon Laplace (IPSL), Centre National de Recherches Météorologiques (CNRM) and Geophysical Fluid Dynamics Laboratory (GFDL). Results from a two-way nesting system between LMDZ-global and LMDZ-regional are also presented. The evaluation of simulated temperature and precipitation for the current climate shows that LMDZ reproduces generally well the spatial distribution of mean climate and extreme climate events in southeast China, but the model has systematic cold biases in temperature and tends to overestimate the extreme precipitation. The two-way nesting model can reduce the ??cold bias?? to some extent compared to the one-way nesting model. Results with greenhouse gas forcing from the SRES-A2 emission scenario show that there is a significant increase for mean, daily-maximum and minimum temperature in the entire region, associated with a decrease in the number of frost days and an increase in the heat wave duration. The annual frost days are projected to significantly decrease by 12?C19?days while the heat wave duration to increase by about 7?days. A warming environment gives rise to changes in extreme precipitation events. Except two simulations (LMDZ/GFDL and LMDZ/IPSL2) that project a decrease in maximum 5-day precipitation (R5d) for winter, other precipitation extremes are projected to increase over most of southeast China in all seasons, and among the three global scenarios. The domain-averaged values for annual simple daily intensity index (SDII), R5d and fraction of total rainfall from extreme events (R95t) are projected to increase by 6?C7, 10?C13 and 11?C14%, respectively, relative to their present-day values. However, it is clear that more research will be needed to assess the uncertainties on the projection in future of climate extremes at local scale.  相似文献   

11.
Most research on future climate change discusses mitigation and impacts/adaptation separately. However, mitigation will have implications for impacts and adaptation. Similarly, impacts and adaptation will affect mitigation. This paper begins to explore these two veins of research simultaneously using an integrated assessment model. We begin by discussing the types of interactions one might expect by impact sector. Then, we develop a numerical experiment in the agriculture sector to illustrate the importance of considering mitigation, impacts, and adaptation at the same time. In our experiment, we find that climate change can reduce crop yields, resulting in an expansion of cropland to feed a growing population and a reduction in bioenergy production. These two effects, in combination, result in an increase in the cost of mitigation.  相似文献   

12.
A scenario of the Mediterranean Sea is performed for the twenty-first century based on an ocean modelling approach. A climate change IPCC-A2 scenario run with an atmosphere regional climate model is used to force a Mediterranean Sea high-resolution ocean model over the 1960–2099 period. For comparison, a control simulation as long as the scenario has also been carried out under present climate fluxes. This control run shows air–sea fluxes in agreement with observations, stable temperature and salinity characteristics and a realistic thermohaline circulation simulating the different intermediate and deep water masses described in the literature. During the scenario, warming and saltening are simulated for the surface (+3.1°C and + 0.48 psu for the Mediterranean Sea at the end of the twenty-first century) and for the deeper layers (+1.5°C and + 0.23 psu on average). These simulated trends are in agreement with observed trends for the Mediterranean Sea over the last decades. In addition, the Mediterranean thermohaline circulation (MTHC) is strongly weakened at the end of the twenty-first century. This behaviour is mainly due to the decrease in surface density and so the decrease in winter deep-water formation. At the end of the twenty-first century, the MTHC weakening can be evaluated as −40% for the intermediate waters and −80% for the deep circulation with respect to present-climate conditions. The characteristics of the Mediterranean Outflow Waters flowing into the Atlantic Ocean are also strongly influenced during the scenario.  相似文献   

13.
The influence of ocean circulation changes on heat uptake is explored using a simply-configured primitive equation ocean model resembling a very idealized Atlantic Ocean. We focus on the relative importance of the redistribution of the existing heat reservoir (due to changes in the circulation) and the contribution from anomalous surface heat flux, in experiments in which the surface boundary conditions are changed. We perform and analyze numerical experiments over a wide range of parameters, including experiments that simulate global warming and others that explore the robustness of our results to more general changes in surface boundary conditions. We find that over a wide range of values of diapycnal diffusivity and Southern Ocean winds, and with a variety of changes in surface boundary conditions, the spatial patterns of ocean temperature anomaly are nearly always determined as much or more by the existing heat reservoir redistribution than by the nearly passive uptake of temperature due to changes in the surface boundary conditions. Calculating heat uptake by neglecting the existing reservoir redistribution, which is similar to treating temperature as a passive tracer, leads to significant quantitative errors notably at high-latitudes and, secondarily, in parts of the main thermocline. Experiments with larger circulation changes tend to produce a relatively larger magnitude of existing reservoir redistribution, and a faster growing effective heat capacity of the system. The effective heat capacity is found to be sensitive to both vertical diffusivity and Southern Ocean wind.  相似文献   

14.
The regional ocean modeling system is used, at a resolution of 1/12°, to explicitly simulate the ocean circulation near the Iberian coast during two 30-year simulations forced by atmospheric fields produced by the RACMO regional climate model. The first simulation is a control run for the present climate (1961–1990) and the second is a scenario run from the IPCC A2 scenario (2071–2100). In the control run, the model reproduces some important features of the regional climate but with an overestimation of upwelling intensity, mainly attributable to inaccuracies in the coastal wind distributions when compared against reanalysis data. A comparison between the scenario and control simulations indicates a significant increase in coastal upwelling, with more frequent events with higher intensity, leading to an overall enhancement of SST variability on both the intra- and inter-annual timescales. The increase in upwelling intensity is more prominent in the northern limit of the region, near cape Finisterre, where its mean effect extends offshore for a few hundred kms, and is able to locally cancel the effect of global warming. If these results are confirmed, climate change will have a profound impact on the regional marine ecosystem.  相似文献   

15.
The new scenario framework facilitates the coupling of multiple socioeconomic reference pathways with climate model products using the representative concentration pathways. This will allow for improved assessment of climate impacts, adaptation and mitigation. Assumptions about climate policy play a major role in linking socioeconomic futures with forcing and climate outcomes. The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key policy attributes such as the goals, instruments and obstacles of mitigation and adaptation measures, and introduce an important additional dimension to the scenario matrix architecture. They can be used to improve the comparability of scenarios in the scenario matrix. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.  相似文献   

16.
We analyze ensembles (four realizations) of historical and future climate transient experiments carried out with the coupled atmosphere-ocean general circulation model (AOGCM) of the Hadley Centre for Climate Prediction and Research, version HADCM2, with four scenarios of greenhouse gas (GHG) and sulfate forcing. The analysis focuses on the regional scale, and in particular on 21 regions covering all land areas in the World (except Antarctica). We examine seasonally averaged surface air temperature and precipitation for the historical period of 1961–1990 and the future climate period of 2046–2075. Compared to previous AOGCM simulations, the HADCM2 model shows a good performance in reproducing observed regional averages of summer and winter temperature and precipitation. The model, however, does not reproduce well observed interannual variability. We find that the uncertainty in regional climate change predictions associated with the spread of different realizations in an ensemble (i.e. the uncertainty related to the internal model variability) is relatively low for all scenarios and regions. In particular, this uncertainty is lower than the uncertainty due to inter-scenario variability and (by comparison with previous regional analyses of AOGCMs) with inter-model variability. The climate biases and sensitivities found for different realizations of the same ensemble were similar to the corresponding ensemble averages and the averages associated with individual realizations of the same ensemble did not differ from each other at the 5% confidence level in the vast majority of cases. These results indicate that a relatively small number of realizations (3 or 4) is sufficient to characterize an AOGCM transient climate change prediction at the regional scale. Received: 12 January 1998 / Accepted: 7 July 1999  相似文献   

17.
In this study we present rainfall results from equilibrium 1 ×– and 2 × CO2 experiments with the CSIRO 4-level general circulation model. The 1 × CO2 results are discussed in relation to observed climate. Discussion of the 2 × CO2 results focuses upon changes in convective and non-convective rainfall as simulated in the model, and the consequences these changes have for simulated daily rainfall intensity and the frequency of heavy rainfall events. In doing this analysis, we recognize the significant shortcomings of GCM simulations of precipitation processes. However, because of the potential significance of any changes in heavy rainfall events as a result of the enhanced greenhouse effect, we believe a first examination of relevant GCM rainfall results is warranted. Generally, the model results show a marked increase in rainfall originating from penetrative convection and, in the mid-latitudes, a decline in largescale (non-convective) rainfall. It is argued that these changes in rainfall type are a consequence of the increased moisture holding capacity of the warmer atmosphere simulated for 2 × CO2 conditions. Related to changes in rainfall type, rainfall intensity (rain per rain day) increases in the model for most regions of the globe. Increases extend even to regions where total rainfall decreases. Indeed, the greater intensity of daily rainfall is a much clearer response of the model to increased greenhouse gases than the changes in total rainfall. We also find a decrease in the number of rainy days in the middle latitudes of both the Northern and Southern Hemispheres. To further elucidate these results daily rainfall frequency distributions are examined globally and for four selected regions of interest. In all regions the frequency of high rainfall events increases, and the return period of such events decreases markedly. If realistic, the findings have potentially serious practical implications in terms of an increased frequency and severity of floods in most regions. However, we discuss various important sources of uncertainty in the results presented, and indicate the need for rainfall intensity results to be examined in enhanced greenhouse experiments with other GCMs.  相似文献   

18.
A high resolution regional climate model (RCM) is used to simulate climate of the recent past and to project future climate change across the northeastern US. Different types of uncertainties in climate simulations are examined by driving the RCM with different boundary data, applying different emissions scenarios, and running an ensemble of simulations with different initial conditions. Empirical orthogonal functions analysis and K-means clustering analysis are applied to divide the northeastern US region into four climatologically different zones based on the surface air temperature (SAT) and precipitation variability. The RCM simulations tend to overestimate SAT, especially over the northern part of the domain in winter and over the western part in summer. Statistically significant increases in seasonal SAT under both higher and lower emissions scenarios over the whole RCM domain suggest the robustness of future warming. Most parts of the northeastern US region will experience increasing winter precipitation and decreasing summer precipitation, though the changes are not statistically significant. The greater magnitude of the projected temperature increase by the end of the twenty-first century under the higher emissions scenario emphasizes the essential role of emissions choices in determining the potential future climate change.  相似文献   

19.
The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26 °C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina’s intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.  相似文献   

20.
This study presents a comparison of the water vapor and clear-sky greenhouse effect dependence on sea surface temperature for climate variations of different types. Firstly, coincident satellite observations and meteorological analyses are used to examine seasonal and interannual variations and to evaluate the performance of a general circulation model. Then, this model is used to compare the results inferred from the analysis of observed climate variability with those derived from global climate warming experiments. One part of the coupling between the surface temperature, the water vapor and the clear-sky greenhouse effect is explained by the dependence of the saturation water vapor pressure on the atmospheric temperature. However, the analysis of observed and simulated fields shows that the coupling is very different according to the type of region under consideration and the type of climate forcing that is applied to the Earth-atmosphere system. This difference, due to the variability of the vertical structure of the atmosphere, is analyzed in detail by considering the temperature lapse rate and the vertical profile of relative humidity. Our results suggest that extrapolating the feedbacks inferred from seasonal and short-term interannual climate variability to longer-term climate changes requires great caution. It is argued that our confidence in climate models' predictions would be increased significantly if the basic physical processes that govern the variability of the vertical structure of the atmosphere, and its relation to the large-scale circulation, were better understood and simulated. For this purpose, combined observational and numerical studies focusing on physical processes are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号