首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We identify a large sample of isolated bright galaxies and their fainter satellites in the 2dF Galaxy Redshift Survey (2dFGRS). We analyse the dynamics of ensembles of these galaxies selected according to luminosity and morphological type by stacking the positions of their satellites and estimating the velocity dispersion of the combined set. We test our methodology using realistic mock catalogues constructed from cosmological simulations. The method returns an unbiased estimate of the velocity dispersion provided that the isolation criterion is strict enough to avoid contamination and that the scatter in halo mass at fixed primary luminosity is small. Using a maximum likelihood estimator that accounts for interlopers, we determine the satellite velocity dispersion within a projected radius of 175  h −1 kpc. The dispersion increases with the luminosity of the primary and is larger for elliptical galaxies than for spiral galaxies of similar b J luminosity. Calibrating the mass–velocity dispersion relation using our mock catalogues, we find a dynamical mass within 175  h −1 kpc of     for elliptical galaxies and     for spiral galaxies. Finally, we compare our results with recent studies and investigate their limitations using our mock catalogues.  相似文献   

2.
We investigate the properties of satellite galaxies formed in N -body/SPH simulations of galaxy formation in the ΛCDM cosmology. The simulations include the main physical effects thought to be important in galaxy formation and, in several cases, produce realistic spiral discs. In total, a sample of nine galaxies of luminosity comparable to the Milky Way was obtained. At magnitudes brighter than the resolution limit,   MV =−12  , the luminosity function of the satellite galaxies in the simulations is in excellent agreement with data for the Local Group. The radial number density profile of the model satellites, as well as their gas fractions also match observations very well. In agreement with previous N -body studies, we find that the satellites tend to be distributed in highly flattened configurations whose major axis is aligned with the major axis of the (generally triaxial) dark halo. In two out of three systems with sufficiently large satellite populations, the satellite system is nearly perpendicular to the plane of the galactic disc, a configuration analogous to that observed in the Milk Way. The discs themselves are perpendicular to the minor axis of their host haloes in the inner parts, and the correlation between the orientation of the galaxy and the shape of the halo persists even out to the virial radius. However, in one case the disc's minor axis ends up, at the virial radius, perpendicular to the minor axis of the halo. The angular momenta of the galaxies and their host halo tend to be well aligned.  相似文献   

3.
4.
N -body simulations predict that cold dark matter (CDM) halo-assembly occurs in two phases: (i) a fast-accretion phase with a rapidly deepening potential well; and (ii) a slow-accretion phase characterized by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM haloes of the Navarro, Frenk & White (NFW) form and provides physical insight into the properties of the mass-accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropized by fluctuations in the gravitational potential during the fast-accretion phase, we show that gravitational collapse in this phase leads to an inner profile  ρ( r ) ∝ r −1  . Slow accretion on to an established potential well leads to an outer profile with  ρ( r ) ∝ r −3  . The concentration of a halo is determined by the fraction of mass that is accreted during the fast-accretion phase. Using an ensemble of realistic mass-accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time and, hence, the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N -body simulations. Using a simple analytic model that captures much of the important physics, we show that the inner   r −1  profile of CDM haloes is a natural result of hierarchical mass assembly with an initial phase of rapid accretion.  相似文献   

5.
The formulation of the tensor virial equations is generalized to unrelaxed configurations, where virial equilibrium does not coincide with dynamical (or hydrostatic) equilibrium. Homeoidally striated, Jacobi ellipsoids, which generalize classical Jacobi ellipsoids, are studied in detail. Further investigation is devoted to the generation of sequences of virial equilibrium configurations where the anisotropy parameters are left unchanged, including both flattened and elongated, triaxial configurations, and the determination of the related bifurcation points. An application is made to dark matter haloes hosting giant galaxies (M ≈ 1012 m), with regard to assigned initial and final configuration, following and generalizing to many respects a procedure conceived by Thuan & Gott (1975). The dependence of the limiting axis ratios, below which no configuration is allowed for the sequence under consideration, on the change in mass, total energy, and angular momentum, during the evolution, is illustrated in some representative situations. The dependence of the axis ratios, ε31 and ε21, on a parameter, related to the initial conditions of the density perturbation, is analysed in connection with a few special cases. The same is done for the rotation parameters. Within the range of the rotation parameter, λ, deduced from high‐resolution numerical simulations, the shape of dark matter haloes is mainly decided by the amount of anisotropy in residual velocity distribution. On the other hand, the contribution of rotation has only a minor effect on the meridional plane, and no effect on the equatorial plane, as bifurcation points occur for larger values of λ. To this respect, dark matter haloes are found to resemble giant elliptical galaxies. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
We present a survey of bright optical dropout sources in two deep, multiwavelength surveys comprising 11 widely separated fields, aimed at constraining the galaxy luminosity function at   z ≈ 7  for sources at  5–10  L * ( z = 6)  . Our combined survey area is 225 arcmin2 to a depth of   J AB= 24.2  (3σ) and 135 arcmin2 to   J = 25.3  (4σ). We find that infrared data longwards of 2 μm are essential for classifying optical dropout sources, and in particular for identifying cool Galactic star contaminants. Our limits on the number density of high-redshift sources are consistent with current estimates of the Lyman break galaxy luminosity function at   z = 6  .  相似文献   

8.
9.
10.
11.
We calculate chemical evolution models for four dwarf spheroidal (dSph) satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. In this way, the independently-obtained star formation histories are used to constrain the evolution of the systems we are treating. This allows us to obtain robust inferences on the history of such crucial parameters of galactic evolution as gas infall, gas outflows and global metallicities for these systems. We can then trace the metallicity and abundance ratios of the stars formed, the gas present at any time within the systems and the details of gas ejection, of relevance to enrichment of the galaxies environment. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii, or the presence of a metal-rich selective wind that might carry away much of the energy output of their supernovae before this might have interacted and heated the gas content, for the gas to be retained until the observed stellar populations have formed. Systems showing extended star formation histories (Carina and Leo I), however, are consistent with the idea that their tidally-limited dark haloes provide the necessary gravitational potential wells to retain their gas. The complex time structure of the star formation in these systems remains difficult to understand. Observations of detailed abundance ratios for Ursa Minor strongly suggest that the star formation history of this galaxy might in fact resemble the complex picture presented by Carina or Leo I, but localized at a very early epoch.  相似文献   

12.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the Hubble Space Telescope /Advanced Camera for Surveys images of the Great Observatories Origins Deep Survey (GOODS) North and South fields (version 2). The sample comprises 457 galaxies over 320 arcmin2 with stellar masses above  3 × 1010 M  in the redshift range  0.4 < z < 1.2  . Our data allow a simultaneous study of number density, intrinsic colour distribution and size. We find that the most massive systems  (≳3 × 1011 M)  do not show any appreciable change in comoving number density or size in our data. Furthermore, when including the results from 2dF galaxy redshift survey, we find that the number density of massive early-type galaxies is consistent with no evolution between   z = 1.2  and 0, i.e. over an epoch spanning more than half of the current age of the Universe. We find large discrepancies between the predictions of semi-analytic models. Massive galaxies show very homogeneous intrinsic colour distributions, with nearly flat radial colour gradients, but with a significant negative correlation between stellar mass and colour gradient, such that red cores appear predominantly in massive galaxies. The distribution of half-light radii – when compared to   z ∼ 0  and   z > 1  samples – is compatible with the predictions of semi-analytic models relating size evolution to the amount of dissipation during major mergers.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
An inside–out model for the formation of haloes in a hierarchical clustering scenario is studied. The method combines the picture of the spherical infall model and a modification of the extended Press–Schechter theory. The mass accretion rate of a halo is defined to be the rate of its mass increase due to minor mergers. The accreted mass is deposited at the outer shells without changing the density profile of the halo inside its current virial radius. We applied the method to a flat Λ-cold dark matter universe. The resulting density profiles are compared with analytical models proposed in the literature, and a very good agreement is found. A trend is found of the inner density profile to become steeper for larger halo mass, which also results from recent N -body simulations. Additionally, present-day concentrations as well as their time evolution are derived and it is shown that they reproduce the results of large cosmological N -body simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号