首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a key parameter for indicating the fraction of surface-reflected solar incident radiation, land surface albedo plays an important role in the Earth's surface energy budget(SEB). Since the Sanjiang Plain has been severely affected by human activities(e.g., reclamation and shrinking of wetlands), it is important to assess the spatiotemporal variations of surface albedo in this region using a long-term remote sensing dataset. In order to investigate the surface albedo climatology, trends, and mechanisms of change, we evaluated the surface albedo variations in the Sanjiang Plain, China from 1982 to 2015 using the Global LAnd Surface Satellite(GLASS) broadband surface albedo product. The results showed that: 1) an increasing annual trend(+0.000 58/yr) of surface albedo was discovered in the Sanjiang Plain based on the GLASS albedo dataset, with a much stronger increasing trend(+0.001 26/yr) occurring during the winter. Most of the increasing trends occurred over the cultivated land, unused land, and land use conversion types located in the northeastern Sanjiang Plain. 2) The increasing trend of land surface albedo in Sanjiang Plain can be largely explained by the changes of both snow cover extent and land use. The surface albedo in winter is highly correlated with the snow cover extent in the Sanjiang Plain, and the increasing trend of surface albedo can be further enhanced by the land use changes.  相似文献   

2.
Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage.  相似文献   

3.
Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI). Attention was paid to the impact of albedo on snow and sea ice mass balance, effect of snow on total ice mass balance, and the model vertical resolution. The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project. The HIGHTSI control run reasonably reproduced the observed snow and ice thickness. A number of albedo schemes were incorporated into HIGHTSI to study the feedback processes between the albedo and snow and ice thickness. The snow thickness turned out to be an essential variable in the albedo parameterization. Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature. The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.  相似文献   

4.
Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is considered a key reason for amplified warming in polar regions. This study focuses on retrieving snow depth on sea ice from brightness temperatures recorded by the Microwave Radiation Imager(MWRI) on board the FengYun(FY)-3 B satellite. After cross calibration with the Advanced Microwave Scanning Radiometer-EOS(AMSR-E) Level 2 A data from January 1 to May 31, 2011, MWRI brightness temperatures were used to calculate sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice(ASI) algorithm. Snow depths were derived according to the proportional relationship between snow depth and surface scattering at 18.7 and 36.5 GHz. To eliminate the influence of uncertainties in snow grain sizes and sporadic weather effects, seven-day averaged snow depths were calculated. These results were compared with snow depths from two external data sets, the IceBridge ICDIS4 and AMSR-E Level 3 Sea Ice products. The bias and standard deviation of the differences between the MWRI snow depth and IceBridge data were respectively 1.6 and 3.2 cm for a total of 52 comparisons. Differences between MWRI snow depths and AMSR-E Level 3 products showed biases ranging between-1.01 and-0.58 cm, standard deviations from 3.63 to 4.23 cm, and correlation coefficients from 0.61 to 0.79 for the different months.  相似文献   

5.
Snow cover is characterized by the high albedo, low thermal conductivity, and notable heat transition during phase changes. Thus, snow cover significantly affects the ground thermal regime. A comparison of the snow cover in high latitudes or high-altitude snowy mountain regions indicates that the eastern Tianshan Mountains (China) show a characteristically thin snow cover (snow depth below 15 cm) with remarkable temporal variability. Based on snow depth, heat flux, and ground temperature from 2014 to 2015 in the Urumqi River source, the spatialtemporal characteristics of snow cover and snow cover influences on the thermal conditions of active layer in the permafrost area were analyzed. During the autumn (Sept. - Oct.), thin and discontinuous snow cover can noticeably accelerate the exothermic process of the ground, producing a cooling effect on the shallow soil. During the winter (Nov. - Mar.), it is inferred that the effective thermal insulation starts with snow depth exceeding 10 cm during early winter. However, the snow depth in this area is generally below 15 cm, and the resulting snow-induced thermal insulation during the winter is very limited. Due to common heavy snowfalls in the spring (Apr. to May), the monthly mean snow thickness in April reached to 15 cm and remained until mid-May. Snow cover during the spring significantly retarded the ground warming. Broadly, snow cover in the study area exerts a cooling effect on the active layer and plays a positive role in the development and preservation of permafrost.  相似文献   

6.
Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environment,considerably affect the stability of snow on slopes.Therefore,a hydrothermal model of snow cover and its underlying surfaces must be developed on the basis of meteorological data to predict and help manage avalanches.This study adopted the conceptual model of snow as a porous medium and quantitatively analysed its internal physical processes on the basis of the thermal exchanges amongst its components.The effects of local meteorological factors on snow structure and the redistribution of energy and mass inside the snow cover in the Tianshan Mountains were simulated.Simulation results showed that deformation as a result of overlying snow and sublimation of snow cover at the bottom is the main cause of density variation in the vertical profile of snow cover.Temperature drives water movement in snow.The low-density area of the bottom snow is the result of temperature gradient.The simulation results of the long-term snow internal mass distribution obtained by the method established in this study are highly consistent with the actual observed trend of variation.Such consistency indicates an accurate simulation of the physical characteristics of snow cover in small and microscale metamorphism in the Tianshan Mountains during the stable period.  相似文献   

7.
I.INTKODUCTIONTheArcticOcean,withanareaofapproximately9.5X106krnZ,ispredominantlysea--icecoveredthroughouttheyearinitscentralarea,whilethesouthedgeofmarginalicezone(MIZ)variesseasonally.ThemaxinltlmofIcecoverextentoccursbetweenFebruaryandMarch,whilethemininlunlisbetweenAugustandseptember.Placingtheiceedgeto8%iceconcentration(percentarealcoveragesofseaice)isopleths,variationofextentofsea--icecoveroftheArcticOceanisI)etween9X106--16X106kmZIbytheobservationofasatellite--bornescanningm…  相似文献   

8.
利用2000-2014年MOD10A2积雪产品和数字高程模型DEM数据,以积雪覆盖率为指标,在分析西藏高原积雪空间分布特点的基础上,定量研究了高程、坡度和坡向等地形要素对高原积雪时空分布的影响。主要结论有:① 西藏高原积雪的空间分布差异显著,具有中东部念青唐古拉山和周边高山积雪丰富,覆盖率高,而南部河谷和羌塘高原中西部积雪少,覆盖率低的特点。② 海拔越高积雪覆盖率越高,积雪持续时间越长,年内变化越稳定。海拔2 km以下积雪覆盖率不足4%,海拔6 km以上覆盖率达75%。海拔4 km以下年内积雪覆盖呈单峰型分布特点,海拔越高,单峰型越明显;而海拔4 km以上则为双峰型,海拔越高,双峰型越明显。海拔6 km以下积雪覆盖率最低值出现在夏季,而6 km以上则出现在冬季。③ 总体上,高原地形坡度越高积雪覆盖率越高。不同坡向中,北坡积雪覆盖率最高,南坡最低,年内分布呈双峰型,而无坡向的平地积雪覆盖率要小于有坡向的山地,其年内变化呈单峰型分布特点。  相似文献   

9.
本文应用1953~1984年的北极海冰资料,分析各区海冰的季节变化、年际变化、自相关特性及互相关特性。认为Ⅰ区海冰占有最大权重,又具有较大的方差,在全区海冰中起着重耍作用。冬季,各区海冰相互关联,其余季节,基本上相互独立。各区海冰均提供了气候“贮存”机制,一个季节的冰能影响下一个季节冰的特性;冬季的贮存能力大于夏季,春秋次之;Ⅱ区和Ⅳ区冰的持续性优于Ⅰ区 。  相似文献   

10.
I.I~crIOXNOwadays,theremotesensingtechniqueshavebeenappliedinmeteorology,oceanography,hydrologyandsomeotherscientificfields,andbecomeauSefulmethodformonitoricsavastregion.Monitoringwithsatelliteremotesensinghas~advantageSincollectingdatacontinuously,regularlyandrepeatedlyinalargearea,inparticularinavastwetlandwherethefieldinvestigationisverydifficult.Therefore,remotesensingwithsatellitedataisthemostsuitablemethodforthesurveyinthiskindofregion.Untilthecoddleofthe20thcentury,wetlandhassometim…  相似文献   

11.
Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.  相似文献   

12.
积雪是地表最活跃的自然要素之一,其动态变化对气候、环境以及人类生活都产生了重要影响。本文利用MODIS积雪产品和IMS雪冰产品,首先通过Terra、Aqua双星合成和临近日合成去除MODIS积雪产品中的部分云像元,再与IMS融合,获取了青藏高原2002-2012年逐日无云积雪覆盖产品,并逐像元计算每个水文年的积雪覆盖日数(SCD)、积雪开始期(SCS)和积雪结束期(SCE),分析了不同生态分区积雪的时空变化特征,以及积雪开始期和结束期与温度、降水的关系。结果表明:青藏高原积雪分布存在明显的空间差异,南部喜马拉雅山脉和念青唐古拉山地区以及西部帕米尔高原和喀喇昆仑山脉为SCD的2个高值区,年均积雪日数在200 d以上。18.1%的区域SCS表现出明显的提前趋势,主要集中在青藏高原中东部;羌塘高原南部、念青唐古拉山西段以及川西地区有显著推迟趋势,占高原面积的8.5%。23.2%的区域SCE显著推迟,主要集中在果洛那曲高寒区、昆仑山区和念青唐古拉山地区;而仅有6.9%的区域表现出提前趋势,主要分布在高原西南部。总体上,不同生态单元内积雪开始与结束期受温度、降水的影响差异很大,表现出不同的空间格局与演变趋势。  相似文献   

13.
A method has been developed for estimating the filtered narrow band surface albedo with Landsat/TM data. In this method, the surface albedo from filtered range of Landsat/TM is converted to the surface albedo with unfiltered spectral range. The atmospheric effects on each channel are systematically different, because of the different spectral behavior of atmospheric parameters. As a result, in this study, atmospheric correction has been done respectively in different parameters for visible and infrared channels. The surface albedos of the Kushiro Mire gotten with this method were compared with the observed data there. The results show that the satellite inferred albedos have a good agreement to the diurnal mean of ground observed albedos with 3% systematic error. There is a seasonal variation of albedo in high and low mires, the albedo decreased gradually from April to July and reached its minimum in July, further it rose gradually from August to October. It is also clear that there is a characteristic pattern of surface distribution according to the vegetation types of this area. The average surface albedos of each type of community are 0.164 for Sphagnum, 0.175 for Carex, 0.179 for Pragmites and 0.166 for Alnus. In the other words, the albedo in high mire (mainly covered by Sphagnum) is lower than that in low mire (mainly covered by Phragmites and Carex).  相似文献   

14.
The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.  相似文献   

15.
Precipitation has a significant influence on the hydro-thermal state of the active layer in permafrost regions, which disturbs the surface energy balance, carbon flux, ecosystem, hydrological cycles and landscape processes. To better understand the hydro-thermal dynamics of active layer and the interactions between rainfall and permafrost, we applied the coupled heat and mass transfer model for soil-plant-atmosphere system into high-altitude permafrost regions in this study. Meteorological data, soil temperature, heat flux and moisture content from different depths within the active layer were used to calibrate and validate this model. Thereafter, the precipitation was increased to explore the effect of recent climatic wetting on the thermal state of the active layer. The primary results demonstrate that the variation of active layer thickness under the effect of short-term increased precipitation is not obvious, while soil surface heat flux can show the changing trends of thermal state in active layer, which should not be negligible. An increment in year-round precipitation leads to a cooling effect on active layers in the frozen season, i.e. verifying the insulating effect of "snow cover". However, in the thawed season, the increased precipitation created a heating effect on active layers, i.e. facilitating the degradation of permafrost. The soil thermal dynamic in single precipitation event reveals that the precipitation event seems to cool the active layer, while compared with the results under increased precipitation, climatic wetting trend has a different influence on the permafrost evolution.  相似文献   

16.
《山地科学学报》2021,18(9):2273-2286
The state of the cryosphere in tropical regions is of great importance because the temperature around the glaciers, permafrost and snow cover always fluctuates near the melting point. These thermal conditions and their high sensitivity to climate change cause the accelerated disappearance of these elements; therefore, it is important to know the climatic factors that regulate them, as well as the physical characteristics of each cryospheric element. Unlike glaciers, permafrost and snow cover have not been widely studied. In recent decades, the study of the glacial and periglacial environment has been carried out in intertropical mountains. However, despite the altitude of their relief and the frequent occurrence of snowfall in tropical high mountains, the conditions that determine such events have been barely analyzed; and in the case of Mexico, the volume of snowfall and its thickness have not been quantified either, as well as their corresponding duration. Consequently, this work is aimed to analyze the temperature and precipitation conditions that determine the snowfall at the higher part of the Nevado de Toluca volcano; at the same time, the conditions of the cryotic climate and their possible implication on the surface are studied. The analysis of data from 1965 to 2016, using frequency statistics, allowed to realize that snowfall occurs with low intensity, its accumulation being less than 10 cm thick and 10 mm of snow water equivalent, which causes the snowpack to stay only a few weeks on average. At the same time, it was determined that there is a significant increase in the number of freeze-thaw cycles. Therefore, due to the climate conditions and their influence on the mountain surface, it is probable that the bedrock is subject to a greater gelifraction dynamics, and the unconsolidated soil surface increases; the combination of the above could cause a greater geomorphological dynamic over time, particularly due to debris flows, and by water and wind erosion of the surface. This work is intended to serve as a reference for the high mountain environment in the intertropical regions.  相似文献   

17.
SNOW HAZARD REGIONALIZATION IN CHINA   总被引:1,自引:1,他引:0  
For the zoning of snow hazard in China, on the principles of (a) comprehensive analysis integrated with dominant factors, (b) multi-level division, and (c) serving the agriculture and stock-raising, transportation and communication, we first classified China into two large zones according to the situation of snow or no snow distribution. Secondly, based on the climate and landform, properties of snow cover and main features of snow hazard, the large zone of snow hazard can be classified into three second-level regions. In order to obviously reflect the difference of snow cover quantity and snow hazard type as well as hazardous degree, twenty subregions (third-level) of snow hazard are further divided in detail. In addition, the boundaries and the principal features of the differences between the various snow hazard regions are provided.  相似文献   

18.
《山地科学学报》2020,17(10):2369-2386
This research aimed to identify the impact of local climatic and topographic conditions on the formation and development of the ice cover in highmountain lakes and the representativeness assessment of periodic point measurements of the ice cover thickness by taking into consideration the role of the avalanches on the icing of the lakes. Field works included measurement of the ice and snow cover thickness of seven lakes situated in the Tatra Mountains(UNESCO biosphere reserve) at the beginning and the end of the 2017/2018 winter season. In addition, morphometric, topographic and daily meteorological data of lakes from local IMGW(Polish Institute of Meteorology and Water Management) stations and satellite images were used. The obtained results enabled us to quantify the impact of the winter eolian snow accumulation on the variation in ice thickness. This variation was ranging from several centimetres up to about 2 meters and had a tendency to increase during the winter season. The thickest ice covers occurred in the most shaded places in the direct vicinity of rock walls. The obtained results confirm a dominating role of the snow cover in the variation of the ice thickness within individual lakes.  相似文献   

19.
《山地科学学报》2020,17(3):542-555
This study explores the relationship between the species composition of lichen and vascular plant species with microtopography at fine scale. We conducted our study in Hardengervidda National Park, Norway. Specifically, we aim to test whether the species richness of different plant lifeforms peaks at middle of the microtopography gradient, and then explain the observed patterns with an aid of snow cover gradient along microtopography and snow cover. We sampled 69 species of vascular plants and lichens in 151 plots of 4 m~2 along 23 transects during summer on Tronsbu, Sandhaug and Besso. Detrended correspondence analysis(DCA) was performed to explore how microtopographical gradient was related to the variation in the species composition. One-way ANOVA was performed to test the microtopographic variability in species richness.Afterwards, generalized linear model(GLM) was used to reveal species richness patterns along the snow cover gradient. The first axis in DCA represents the complex gradient from snow free ridge to wet snowbed habitats and the second axis represents a gradient from acidic to calcareous sites. Lichen's species richness is greater in ridge than in snowbeds, while all other life forms follow the opposite trend. Species richness for total plant species, vascular plant species and herbaceous plant species increased with increase in weighted average snow indicator value(WASI), whilst species richness for lichen species declined substantially towards the maximum WASI value. In contrast, species richness for dwarf shrub species showed a unimodal relationship with WASI. This study shows that liquid water availability provides a good potential explanation for species composition and richness in mountains, which is controlled by snow cover and prevalent wind direction.  相似文献   

20.
积雪和植被的覆盖范围对于研究气候变化和水资源平衡、生态环境状况具有重要的意义,但它们的光谱曲线具有较强的时空变异性,难以获取精确的覆盖度产品。针对线性混合像元分解算法在积雪和植被覆盖度反演中噪声和光谱变异带来的误差,本文提出了一种基于归一化扰动模型的积雪和植被覆盖度反演方法,并选用了3个不同的区域(单独的积雪覆盖区、单独的植被覆盖区、积雪和植被混合的覆盖区)来验证所提出框架的可行性。研究结果表明:① 该方法单独反演积雪覆盖度的均方根误差为0.172,单独植被覆盖度反演均方根误差为0.223,积雪和植被覆盖度混合反演的均方根误差分别为0.185和0.249,3种方案均有较高的精度;② 对影像与端元组进行归一化后,降低了光谱异质性,在此方法下的扰动混合模型可以有效地减弱MODIS影像光谱变化和噪声带来的误差;③ 针对MODIS影像,该框架获取的积雪覆盖度相对于植被覆盖度具有更高的精度。今后将进一步发展类似的积雪覆盖度与雪粒径协同反演算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号