首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 563 毫秒
1.
Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2008. Debris flow mitigation and risk assessment is a key issue for reconstruction.The existing methods of inundation simulation are based on historical disasters and have no power of prediction.The rain-flood method can not yield detailed flow hydrograph and does not meet the need of inundation simulation. In this paper,the process of water flow was studied by using the Arc-SCS model combined with hydraulic method,and then the debris flow runoff process was calculated using the empirical formula combining the result from Arc-SCS.The peak discharge and runoff duration served as input of inundation simulation. Then,the dangerous area is predicted using kinematic wave method and Manning equation.Taking the debris flow in Huashiban gully in Beichuan County,Sichuan Province,China on 24 Sep.2008 as example,the peak discharge of water flow and debris flow were calculated as 35.52 m3·s-1 and 215.66 m3·s-,with error of 4.15%compared to the measured values.The simulated area of debris-flow deposition was 161,500 m2,vs.the measured area of 144,097 m2,in error of 81.75%.The simulated maximum depth was 12.3 m,consistent with the real maximum depth between 10 and 15 m according to the field survey.The minor error is mainly due to the flow impact on buildings and variations in cross-section configuration.The present methodology can be applied to predict debris flow magnitude and evaluate its risk in other watersheds inthe earthquake area.  相似文献   

2.
A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods.  相似文献   

3.
The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as "instability-translational slide-tension fracture-collapse" and the formation mechanism as "translational landslide induced by heavy rainfall". The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research onpotential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably.  相似文献   

4.
Assessment of debris flow hazards is important for developing measures to mitigate the loss of life and property and to minimize environmental damage. Two modified uncertainty models, Set Pair Analysis (SPA) and modified Set Pair Analysis (mSPA), were suggested to assess the regional debris flow hazard. A ease study was conducted in seven towns of the Beichuan county, Sichuan Province, China, to test and compare the application of these two models in debris flow hazard assessment. The results showed that mSPA only can fit for value-variables, but not for non value-variable assessment indexes, Furthermore, as for a given assessment index xi, mSPA only considers two cases, namely, when grade value increases with xi and when grade value decreases with xi. Thus, mSPA can not be used for debris flow hazard assessment but SPA is credible for the assessment because there are no limitations when using SPA model to assess the debris flow hazard. Therefore, in this study SPA is proposed for assessing debris flow hazard.  相似文献   

5.
Shangyao valley is located in Jin’an village of Songpan in Sichuan. Many material sources are accumulated in valleys. The debris flow will be triggered by a rain storm with short-duration and strong intensity, which may threaten people’s lives and property in downstream. Based on the investigation,the formation conditions of debris flow and its dynamic characteristics are analyzed and its hazard assessment is investigated. Research shows that there is the potential cause of debris flow in Shangyao valley,which is of the middle risk class.  相似文献   

6.
The occurrence of debris flow is affected by many factors. Risk zoning of debris flow plays a vital role in the early-warning and prediction of abrupt geological hazards, and exploration of new method is needed in the early-warning and prediction of geological hazards. The extension theory is a new method to solve contradiction matters. Based on extension theory, AHP and GIS, the risk zoning model of debris flow was established in this paper. The result of this research provides a new way in the risk zoning, early-warning and prediction of debris flow  相似文献   

7.
A Debris-flow Simulation Model for the Evaluation of Protection Structures   总被引:3,自引:0,他引:3  
Debris flow is the flow of a solid-fluid mixture and in this investigation it is treated as the flow of a continuum in routing. A numerical model is proposed describing debris flow including erosion and deposition processes with suitable boundary con-ditions. The numerical model is applied to evaluate the effects of protection structures against debris flow caused by heavy rainfall on the Shen-Mu Stream of Nantou County located in central Taiwan. Simulation results indicated that the proposed model can offer useful pre-planning guidelines for engineers.  相似文献   

8.
The objective of this study is to incorporate a numerical model with GIS to simulate the movement, erosion and deposition of debris flow across the three dimensional complex terrain. In light of the importance of erosion and deposition processes during debris flow movement, no entrainment assumption is unreasonable. The numerical model considering these processes is used for simulating debris flow. Raster grid networks of a digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the numerical model is solved numerically using the Leap-frog finite difference method. Finally, the simulation results can be displayed by GIS easily and used to debris flow evaluation. To illustrate this approach, the proposed methodology is applied to the Yohutagawa debris flow that occurred on 20th October 2010, in Amami- Oshima area, Japan. The simulation results that reproduced the movement, erosion and deposition are in good agreement with the field investigation. The effectiveness of the dam in this real-case is also verified by this approach. Comparison with the results were simulated by other models, shows that the present coupled model is more rational and effective.  相似文献   

9.
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called ’8.13’ Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the ’8.13’ Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated ’8.13’ Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.  相似文献   

10.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

11.
四川省小流域泥石流危险性评价   总被引:1,自引:0,他引:1  
泥石流危险性评价是泥石流防灾减灾的重要内容。本文以四川省为研究区,以DEM为数据源,通过提取水流方向,计算汇流累积量,实现四川省小流域划分。基于收集的已查明泥石流流域资料,分析了泥石流孕灾环境与成灾特点,选择流域高差、流域面积为指标,建立基于能量条件的潜势泥石流流域判识模型,对划分的小流域进行判识,识别出7798个小流域具备泥石流发生所需能量条件,面积为31.1×104 km2,占四川省总面积的64.18 %。进而建立了泥石流危险性评价指标体系和可拓物元模型,开展了小流域泥石流危险性评价,划分了危险度等级,得到中度、高度、极高危险区的小流域个数分别为1946、1725和1002个,面积分别为9.1×104、7.7×104和3.4×104 km2,中度以上危险区面积共20.2×104 km2,占四川省总面积的41.67%。最后对评价结果可靠性和各等级泥石流危险区在各地市级行政区、各大流域的分布进行了分析。其结果对促进泥石流判识与危险性评价理论,区域泥石流防灾减灾与山区可持续发展等具有重要的理论和现实意义。  相似文献   

12.
泥石流危险范围预测模型及在昆明东川城区的应用   总被引:1,自引:0,他引:1  
结合泥石流危险范围模型实验数据,运用多元回归分析方法探讨了泥石流危险范围预测,并进行了误差分析。以昆明市东川城区后山3条泥石流沟为例,运用该模型对其危险范围进行了预测分析,为东川城区泥石流防灾提供了科学依据。  相似文献   

13.
Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural haz-ard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting de-bris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and use-fill in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time se-ries of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collect-ed in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed.  相似文献   

14.
lINTRODUCTIONDebrisflowisoneofthesixprimarynaturalhaz-ards,whichinfluencesthedevelopmentofnationalso-cietyandeconomyinChina.Itsseverityissecondarytoflood,draught,earthquake,typhoon,butstrongerthanbiologicalhazards.Morethan3ooOodebrisflowcreeksarescatteredihthewholemountainousarea,andes-PeciallyconcentratedinsouthwestofChina.DebrisFlowInformationSystem(DFIS)operatedbytheInsti-tuteofMountainHazardsandEnvironmentoftheChi-neseAcademyofScienceshasalreadyestablishedadatabaseandcataloguec…  相似文献   

15.
The occurrence of debris flow is affected by many factors. Risk zoning of debris flow plays a vital role in the early-warning and prediction of abrupt geological hazards, and exploration of new method is needed in the early-warning and prediction of geological hazards. The extension theory is a new method to solve contradiction matters. Based on extension theory, AHP and GIS, the risk zoning model of debris flow was established in this paper. The result of this research provides a new way in the risk zoning, early-warning and prediction of debris flow  相似文献   

16.
A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.  相似文献   

17.
The Chedaren ravine belongs to high-prone areas of debris flow in Jilin Province,which threaten the local people's life and security seriously. The authors used the residual correction theory to amend the GM (1, 1) model and forecast annual precipitation in disaster year of the Chedaren ravine; it provides scientific foundation for early warning of debris flow disaster in the rainy season based on weather forecast. The prediction results show that annual precipitation is 724.7 mm in 2009; the region will probably occur large-scale debris flow during the rainy season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号