首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.  相似文献   

2.
This paper presents the development of a generalized Boussinesq (gB) model for the periodic non-linear shallow-water waves. An incident cnoidal wave solution for the gB model is derived and applied to the wave simulation. A set of radiation boundary conditions is also established to transmit effectively the cnoidal waves out of the computational domain. The classical solutions of the second-order cnoidal waves are discussed within the content of the KdV equation and the generalized Boussinesq equations. An Euler's predictor-corrector finite-difference algorithm is used for numerical computation. The propagation of normally incident cnoidal waves in a channel is studied. The simulated wave profiles agree well with the analytical results. The temporal and spatial evolution of an obliquely incident cnoidal wave is also modelled. The phenomenon of Mach reflection is discussed.  相似文献   

3.
Inviscid three-dimensional free surface wave motions are simulated using a novel quadratic higher order boundary element model (HOBEM) based on potential theory for irrotational, incompressible fluid flow in an infinite water-depth. The free surface boundary conditions are fully non-linear. Based on the use of images, a channel Green function is developed and applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain. In order to generate incident waves and dissipate outgoing waves, a non-reflective wave generator, composed of a series of vertically aligned point sources in the computational domain, is used in conjunction with upstream and downstream damping layers. Numerical experiments are carried out, with linear and fully non-linear, regular and focused waves. It can be seen from the results that the present approach is effective in generating a specified wave profile in an infinite water-depth without reflection at the open boundaries, and fully non-linear numerical simulations compare well with theoretical solutions. The present numerical technique is aimed at efficient modelling of the non-linear wave interactions with ocean structures in deep water.  相似文献   

4.
A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.  相似文献   

5.
Zhang  Hao-chen  Liu  Shu-xue  Li  Jin-xuan  Wang  Lei 《中国海洋工程》2019,33(2):160-171
With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.  相似文献   

6.
A Boussinesq model for simulating wave and current interaction   总被引:1,自引:0,他引:1  
A new formulation of a pair of Boussinesq equations for three-dimensional nonlinear dispersive shallow-water waves is presented. This set of model equations permits spatial and temporal variations of the bottom topography and the presence of uniform currents. The newly derived equations are used to simulate the propagation of cnoidal waves and their interactions with a uniform current in a wave channel. The modified Euler's predictor-corrector algorithm for time advancing and a central difference representation for the space derivatives are applied to the computation of the basic equations. A set of open boundary conditions is developed to effectively transmit the cnoidal waves out of the computational domain. It is found that, as expected, the wave length decreases with an opposing current and increases with a following current. The wave height increases in magnitude with an opposing current and decreases with a following current. The Mach reflection due to oblique cnoidal waves propagating into an open channel with an opposing current is also investigated. Due to the opposing current, the wave patterns are compressed into smaller saddle-like regions in comparison with the Mach reflection without current effect.  相似文献   

7.
The short time scale (minutes) and azimuthal dependence of sound wave propagation in shallow water regions due to internal waves is examined. Results from the shallow water acoustics in random media (SWARM-95) experiment are presented that reflect these dependencies. Time-dependent internal waves are modeled using the dnoidal solution to the nonlinear internal wave equations, so that the effects of both temporal and spatial variability can be assessed. A full wave parabolic equation model is used to simulate broadband acoustic propagation. It is shown that the short term temporal variability and the azimuthal dependence of the sound field are strongly correlated to the internal wave field  相似文献   

8.
Aerial photography can be an important source of information regarding surface waves and oceanic features that affect the propagation of these waves. This correspondence briefly reviews the parameters involved in aerial photography of coherent trains of surface waves, including the effects of water reflectance, waves, and sun and cloud conditions, on wave imaging in aerial photos. It also describes an analytical model of the specular reflection of sunlight by surface waves, together with experimental results from an outdoor wave facility. Analytical expressions are derived for the accuracy of wavelength measurements using aerial photos of waves in the glitter pattern. Further, it treats wave slope determination from aerial photos of idealized waves and presents experimental results from an outdoor wave facility. The application of remote synoptic surface flow determination by imaging of surface waves is briefly discussed.  相似文献   

9.
Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.  相似文献   

10.
畸形波传播速度实验和数值模拟研究   总被引:1,自引:1,他引:0  
畸形波的传播速度是其最重要的特征参数之一。研究畸形波的传播速度有助于深入和全面了解畸形波的生成机理及其演化过程,另外还可以用于畸形波的预报。针对现有关于畸形波传播速度计算方法(高阶Stokes波理论近似估算,Hilbert变换和两固定点的距离除以畸形波的波峰经过两点所用时间)的不准确性和局限性,使用32个测点描述畸形波波峰沿波浪水槽的运动轨迹,再用回归分析法估算波峰运动轨迹与时间的相关关系,从而计算出畸形波的传播速度。基于288组物理模拟畸形波和364组数值模拟畸形波传播速度的计算结果,使用回归分析方法得出了畸形波传播速度的半经验半理论计算公式,同时还分析了畸形波传播速度的强非线性特征。  相似文献   

11.
An improvement on the simulation of outgoing waves on a time dependent numerical model for water wave propagation in the nearshore region is presented. The governing equations consist of a system of first order partial differential equations (PDEs), the equation of continuity and the equation of motion. A comparative study of first order radiation boundary conditions (BCs) and first order radiation BCs combined with sponge layers is presented for cases where outgoing waves leave the numerical domain of calculation through the open boundary. A reduction of spurious reflections from the numerical open boundaries can be obtained with an irrelevant increase in terms of computational cost.  相似文献   

12.
《Coastal Engineering》1999,38(2):91-113
The present study aims at investigating the non-linear triad interaction process affecting shoaling surface gravity wave fields. The triad interaction phenomenon being enhanced towards the shore, the domain of study is extended up to the surf zone. Three 1D non-linear wave models (one phase-resolving and two phase-averaged spectral models) have been implemented and compared to laboratory experiments performed in a wave flume. This set of models includes two existing models and a new one which has been developed in the frame of this work. The models include a breaking dissipation term based on the parametrical model of Battjes and Janssen [Battjes, J.A., Janssen, P.A.E.M., 1978. Energy loss and set-up due to breaking of random waves. Proc. 16th Int. Conf. Coastal Eng. (ASCE), Vol. 1, pp. 569–587.]. The investigations concern the evolution of variance spectra, spectral significant wave height and mean period over a barred bathymetric profile. In addition, the performances of the different models are analysed by computing the spectral source term for triad interactions. We found that all models are able to reproduce the main features of non-linear mechanisms affecting a wave field in the near-shore zone. The phase-resolving model gives the most accurate results for non-breaking situations. It correctly reproduces the non-linear coupling effect in decreasing water depths due to wave–wave interactions, as well as the harmonic release after a bar. However, the model is computationally time-consuming. The CPU time is considerably reduced using phase-averaged models. They give satisfactorily results on harmonic generation. However, they do not reproduce the release of harmonics as water depth increases. In breaking conditions, the variance spectra undergo significant changes under the combined effects of non-linear energy transfers and dissipation. The depth-induced wave breaking model included in the equations provides a good estimate of the energy decay in the surf zone.  相似文献   

13.
波浪作用下海床动力反应的数值分析   总被引:2,自引:3,他引:2  
栾茂田  王栋 《海洋工程》2001,19(4):40-45
近海和离岸建筑物的基通常处于连续不断的小风浪作用之下,可将其变形视为弹性。基于二维广义Biot理论,提出了线性或非线性波浪作用下饱和弹性海床动力应应的时域有限元数值解法。静力平衡条件和Biot方程组成的边值方程可视为其特例,在比较算例中,数值计算得到的孔压和有效应力幅值沿海床深度的分布与解析解十分吻合。土骨架和孔隙流体的加速度对海床动力反应的影响很小。具体算例表明,线性波沿缓坡海床传播时,土层中超静孔压和有效应力幅值随之增大,有可能发生滑动坡坏。所提出的数值解法能够灵活地处理非线性波浪荷载,海底复杂地质条件和波浪沿缓坡传播等复杂情况。  相似文献   

14.
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoc unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application.  相似文献   

15.
刘达  黄本胜  邱静  谭超 《海洋工程》2016,34(2):16-23
沿海防浪林能形成柔性的植物消浪体系,可以有效降低风暴潮灾害。由于防浪林消浪效果受波浪、近岸水深及植物等多重因素的影响,消浪机理较为复杂,以往的系统研究成果较少。本文以立面二维自由面紊流模型为工具,建立了基于植物冠层特征的多孔介质模型,精细地模拟了破碎波对植物带的冲击,并与物理模型试验结果进行了对比验证,计算分析了植物带宽度、植物密度、滩地水深等因素对消浪效果的影响。  相似文献   

16.
A parabolic equation for the propagation of periodic internal waves over varying bottom topography is derived using the multiple-scale perturbation method. Some computational aspects of the numerical implementation are discussed. The results of numerical experiments on propagation of an incident plane wave over a circular-type shoal are presented in comparison with the analytical result, based on Born approximation.  相似文献   

17.
A number of existing models for surface wave phase speeds (linear and non-linear, breaking and non-breaking waves) are reviewed and tested against phase speed data from a large-scale laboratory experiment. The results of these tests are utilized in the context of assessing the potential improvement gained by incorporating wave non-linearity in phase speed based depth inversions. The analysis is focused on the surf zone, where depth inversion accuracies are known to degrade significantly. The collected data includes very high-resolution remote sensing video and surface elevation records from fixed, in-situ wave gages. Wave phase speeds are extracted from the remote sensing data using a feature tracking technique, and local wave amplitudes are determined from the wave gage records and used for comparisons to non-linear phase speed models and for non-linear depth inversions. A series of five different regular wave conditions with a range of non-linearity and dispersion characteristics are analyzed and results show that a composite dispersion relation, which includes both non-linearity and dispersion effects, best matches the observed phase speeds across the domain and hence, improves surf zone depth estimation via depth inversions. Incorporating non-linearity into the phase speed model reduces errors to O(10%), which is a level previously found for depth inversions with small amplitude waves in intermediate water depths using linear dispersion. Considering the controlled conditions and extensive ground truth, this appears to be a practical limit for phase speed-based depth inversions. Finally, a phase speed sensitivity analysis is performed that indicates that typical nearshore sand bars should be resolvable using phase speed depth inversions. However, increasing wave steepness degrades the sensitivity of this inversion method.  相似文献   

18.
Two methods are presented for analysis of second order waves in a wave tank. The first method is by placing three wave probes in a line parallel to the line of propagation of long-crested irregular waves. By correlation analysis the spectra of set-down, parasitic waves and reflected waves of the second order are separated. The second method is to apply the square-law operation as proposed by Bendat and Piersol, to the spectral analysis of this particular non-linear system. The results of the two methods seem to agree reasonably well. A practical application of the present analysis is to analyse low frequency responses of a moored structure in a wave tank, where it is recognized that simulation of second order waves and the structure's responses are often accompanied by parasitic second order waves and reflected waves in the tank. These adulterations may be regarded as noises, and the proper information regarding non-linear second order responses extracted from the raw output.  相似文献   

19.
On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time-dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin’s model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin’s model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin’s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real-time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.  相似文献   

20.
应用基于势流理论的时域高阶边界元方法,建立一个完全非线性的三维数值波浪水槽,通过实时模拟推板造波运动的方式产生波浪。通过混合欧拉-拉格朗日方法和四阶Runge-Kutta方法更新自由水面和造波板的瞬时位置。利用所建模型分别模拟了有限水深波和浅水波,与试验结果、相关文献结果和浅水理论结果吻合较好,且波浪能够稳定传播。系统地讨论造波板的运动圆频率、振幅和水深等对波浪传播和波浪特性的影响,并对波浪的非线性特性进行分析,研究发现造波板运动频率、运动振幅以及水深均将对波浪形态和波浪非线性产生显著影响。结果为真实水槽造波机的运动控制以及波浪生成试验提供了依据,便于实验室设置更合理的参数来准确模拟不同条件下的波浪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号