首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In the 6 component system CaO-MgO-Al2O3-SiO2-CO2-H2 with 9 solid phases (quartz, plagioclase, epidote, tremolite, talc, chlorite, magnesite, calcite, dolomite) and a fluid phase, all 17 possible fluid-absent reactions have been set up and balanced. Using molar entropy and volume data for the solid phases, these reactions are arranged in P-T space about the 8 possible fluid-absent invariant points after the method of Schreinemakers. Field observations in Ordovician greenschist facies basic volcanics at Sofala N.S.W., indicate that neither talc+epidote nor magnesite+calcite are stable under the conditions of metamorphism. Assuming these conditions to apply to the theoretical study here, the fluid-absent invariant points are arranged in a relative fashion with fluid-absent reactions subdividing P-T space into smaller areas.A scheme which permits a fluid of composition (i.e. a fluid containing CO2 and H2O together with other components), is modeled by treating H2O as a mobile component independent of CO2, and by allowing values that lie off the locus of binary H2O-CO2. Taking into account that neither talc+epidote nor magnesite +calcite is to be permitted, the fluid scheme is used to set up and balance all 39 possible fluid-bearing reactions. These are then arranged about 20 valid fluid-bearing invariant points in space after the method of Korzhinskii and Sehreinemakers.A characteristic solid phase assemblage is defined for each P-T area using chemographic relations inherent from the fluid-absent boundary reactions. The fluid-bearing invariant points that have a solid assemblage compatible with the characteristic assemblage in a particular P-T area are stable within the P-T regime of that area. When these stable fluidbearing invariant points are arranged in a relative fashion in space, they outline a fluid grid which can be used to study the possible effects of local variation in X fluid over the particular P-T regime.Symbols Used U chemical potential - S entropy - V molar volume - n coefficient of a phase in a reaction - X mole fraction - T temperature - P pressure - F number of degrees of freedom - C number of components - p number of phases - s solid - slope of reaction - 1 quartz - 2 plagioclase - 3 epidote - 4 tremolite - 5 talc - 6 chlorite - 7 dolomite - 8 magnesite - 9 calcite  相似文献   

2.
New experiments have been performed in the system CaO+MgO+Al2O3+SiO2 (CMAS)+FeO at atmospheric pressure. Most of the experiments were conducted on Fe-rich compositions, in the low-temperature field of the assemblage liq(liquid)+an(anorthite) +aug(augite)+ol(olivine), and mostly along five isotherms. Others were located on, or nearby the assemblage boundaries. These experiments, together with the previously reported high temperature experiments (Shi and Libourel 1991; Libourel et al. 1989), permit contouring the complete liq+an+aug+ol divariant field, and tracing out some of its boundaries. The boundary of the assemplage liq+an+aug+ol consists of six segments, with the appearance of one of the following phases, orthopyroxene, pigeonite, tridymite, bustamite, kirschsteinite, and spinel, as an additional phase. Within the stability field of the assemblage liq+an+aug+ol, the compositions of all the coexisting phases have been described as functions of temperature and silica content in the melt by applying a multiple linear regression method. This allows a quantitative characterization of the divariant assemblage liq+an+aug+ol in the system CMAS+FeO, from 1273°C to 1055°C, with olivine compositions ranging from Mg*[Mg/(Mg+Fe)]=1 to 0.08. Knowing the composition-temperature relationships, the basic T-X configuration of the assemblage liq+an +aug+ol has been analysed, and mass-balance calculations have been performed to examine the FeO effect on different crystallization processes. Addition of FeO to the system CMAS transforms the thermal divide in the assemblage liq+an+di(diopside)+fo(forsterite) into a thermal ridge. With decreasing temperature, the spine of the thermal ridge moves towards Si-poor compositions at Mg-rich end but towards Si-rich compositions at the Fe-rich end. This indicates that late-stage tholeiitic liquids can follow a trend of silica enrichment without the crystallization of an oxide phase. Crystallization paths of the assemblage liq+an+aug+ol are determined by the detailed T-X relations of the thermal ridge with the melt evolving away from the spine. The boundary reactions with decreasing temperature have also been characterized numerically.  相似文献   

3.
An outline for a metamorphic grid involving a greenschist facies assemblage is presented in Watts (1973). This grid is derived from a theoretical determination of all possible P-T dependent (solid-solid) reactions and invariant points as well as those in which a fluid, containing CO2, H2O and other unspecified components, takes part. The thermodynamic data in Watts (1973) were accidentally calculated at 425° K and not at 425° C. Since 425° K is an unreasonably low temperature for greenschist facies equilibria, these data have been recalculated at 700° K (427° C) and a new topology of fluid-absent (solid-solid) reactions and invariant points in P-T space results, since the slopes of such reactions change under conditions at the higher temperature. The slopes of the fluid-bearing reactions are independent of P, T and remain unchanged. However, for each different P-T grid of solid-solid reactions, a new set of chemographic arrangements is valid for the fluidbearing invariant points. A set of μH2OCO2 diagrams consistent with, and dependent on the new P-T grid is presented.  相似文献   

4.
5.
A quantitative petrogenetic grid for pelitic schists in the system KFMASH that includes the phases garnet, chlorite, biotite, chloritoid, cordierite, staurolite, talc, kyanite, andalusite, sillimanite, and pyrophyllite (with quartz, H2O and muscovite or K-feldspar in excess) is presented. The grid is based on thermodynamic data of Berman et al. (1985) and Berman (1988) for endmember KFASH and KMASH equilibria and natural Fe-Mg partitioning for the KFMASH system. Calculation of P-T slopes and the change in Fe/(Fe+Mg) along reactions in the KFMASH system were made using the Gibbs method. In addition, the effect on the grid of MnO and CaO is evaluated quantitatively. The resulting grid is consistent with typical Buchan and Barrovian parageneses at medium to high grades. At low grades, the grid predicts an extensive stability field for the paragenesis chloritoid+biotite which arises because of the unusual facing of the reaction chloritoid+biotite + quartz+H2O = garnet+chlorite+muscovite, which proceeds to the right with increasing T in the KFMASH system. However, the reaction proceeds to the left with increasing T in the MnKFASH system so the assemblage chloritoid + biotite is restricted to bulk compositions with high Fe/(Fe+Mg+Mn). Typical metapelites will therefore contain garnet+chlorite at low grades rather than chloritoid + biotite.  相似文献   

6.
Ohne Zusammenfassung
Stability conditions of grossularite-bearing parageneses in the system CaO-Al2O3-SiO2-CO2-H2O

Herrn Prof. Dr. H. G. F. Winkler danke ich vielmals für sein Interesse an dieser Arbeit, für anregende Diskussionen und die kritische Durchsicht des Manuskriptes. Auch den Herren Doz. Dr. P. Metz, Dr. K.-H. Nitsch und Doz. Dr. V. Trommsdorff danke ich herzlich für wertvolle Diskussionen und Hinweise. Herrn Dr. E-an Zen danke ich für einen Hinweis zur Phasentheorie und Herrn Prof. Dr. E. Schwarzmann für die Durchführung von IR-Aufnahmen. — Der Deutschen Forschungsgemeinschaft gilt mein Dank für die Arheitsmöglichkeiten an den Herrn Prof. Dr. Winkler zur Verfügung gestellten Apparaturen.  相似文献   

7.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

8.
The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.  相似文献   

9.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

10.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

11.
Equilibria for several reactions in the system CaO-Al2O3-SiO2-CO2-H2O have been calculated from the reactions calcite+quartz=wollastonite+CO2 (5) and calcite+Al2SiO5+quartz=anorthite+CO2 (19) and other published experimental studies of equilibria in the systems Al2O3-SiO2-H2O and CaO-Al2O3-SiO2-H2O.The calculations indicate that the reactions laumontite+CO2=calcite+kaolinite+2 quartz+2H2O (1) and laumontite+calcite=prehnite+quartz+3H2O+CO2 (3) in the system CaO-Al2O3-SiO2-CO2-H2O, are in equilibrium with an H2O-CO2 fluid phase having -0.0075 for P fluid=P total=2000 bars.These calculations limit the stability of zeolite assemblages to low p CO2.Using the above reactions as model equilibria, several probelms of p CO2 in low grade metamorphism are discussed. (a) the problem of producing zeolitic minerals from metasedimentary assemblages of carbonate, clay mineral, quartz. (b) the significance of calcite (or aragonite) associated with zeolite (or lawsonite) in low grade metamorphism and hydrothermal alteration. (c) the reaction of zeolites (or lawsonite) with calcite (or aragonite) to produce dense Ca-Al-hydrosilicates (eg. prehnite, zoisite, grossular).  相似文献   

12.
The MgAl surinamite end member, (Mg3Al3)[6]O[AlBeSi3O15], was synthesized in the requisite system with and without water. The new phase is monoclinic, space group P2/n, with a=9.881(1)Å; b=11.311(1) Å; c=9.593(1) Å; =109.52(2)°. Refractive indices are n x=1.7015(20); n y=1.7035(20); n z=1.7055(20). The infrared spectrum shows characteristic differences against the structurally related and optically extremely similar phase sapphirine.Using the seeding technique, the preliminary stability field for MgAl surinamite was found to lie at high temperatures (650 °C) and high pressures (4 kbar). At lower temperatures breakdown takes place to hydrous assemblages of chlorite, talc, and chrysoberyl with kyanite or yoderite; at lower pressures chrysoberyl forms parageneses with sapphirine and cordierite. In crystal chemical terms the underlying principle for the stability of surinamite versus that of the low-pressure assemblages is the higher proportion of octahedrally coordinated Al in surinamite (75%). Following the same principle surinamite itself decomposes at still higher pressures to a paragenesis, in which all Al enters octahedral coordination (pyrope+a chrysoberyl-type phase and some unidentified X-ray peaks).The stability field of synthetic MgAl surinamite is in good agreement with P, T-estimates of some 8–12 kbar, 800°–950° C as taken from the literature for the few occurrences of natural, Fe-bearing surinamite in granulite and upper amphibolite facies environments. The incorporation of iron in surinamite must be limited, because this mineral is known to coexist with its more iron-rich breakdown assemblage almandine-rich garnet+chrysoberyl. As the minimum melting curve of granite under hydrous conditions lies outside the surinamite field up to a water pressure of about 20 kbar, the absence of surinamite in normal granitic pegmatites can already be explained by physical constraints. However, there are probably also chemical constraints in the generally high Fe/Mg bulk chemistry of the pegmatite environments.Now at Institut für Kristallographie, Technische Hochschule, Templergraben 55, D-5100 Aachen, FRG  相似文献   

13.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

14.
The assemblage Mg-cordierite — corundum is formed stably through the reaction chlorite+Al-silicate=cordierite+corundum+H2O at 535° C, 2kb; 615°, 5 kb; and 665° C, 7 kb water pressure. In the order of increasing pressure andalusite, sillimanite, and kyanite participate as stable phases in this equilibrium. A spinel-Al-silicate tie-line is only stable at high temperatures not likely to be attained in rocks. The natural assemblage spinel-Al-silicate is, however, to be explained by the additional presence of FeO in these rocks.  相似文献   

15.
中-低压泥质岩在KFMASH体系中的相平衡关系   总被引:3,自引:0,他引:3  
张翠光  魏春景 《岩石学报》2004,20(3):725-736
利用内部一致热力学数据库、可靠的固溶体活度模型,用有关程序THERMOCALC 3.1计算了KFMASH(K2O-FeO-MgO-Al2O3-SiO2-H2O)体系和亚体系KMASH、KFASH中的岩石成因格子。温压范围为P=0.05~1.2GPa,T=450~900℃.包括黑云母、白云母、钾长石、绿泥石、硬绿泥石、十字石、堇青石、斜方辉石、石榴石、尖晶石、红柱石、蓝晶石、矽线石、石英(过量)、熔体和水(固相线以下水过量、固相线以上水不过量)..利用这些成因格子以及所计算的AFM图、P-T视剖面图,可以很好地阐明泥质岩石中低压变质作用的相平衡关系及P-T条件。所计算的结果与岩石学研究非常吻合,能解释从绿片岩相至麻粒岩相的一系列变化。尤其是熔体的引入,使我们能够定量计算高角闪岩相以上出现的混合岩化过程。  相似文献   

16.
Dumortierite, generally simplified as Al7BSi3O18, was synthesized in the pure system Al2O3–B2O3–SiO2–H2O (ABSH) using gels with variable Al/Si ratios mixed with H3BO3 and H2O in known proportions as starting materials. Synthesis conditions ranged from 3 to 5 and 15 to 20 kbar fluid pressure at 650° to 880°C. On the basis of analyses, synthetic dumortierite shows relatively narrow homogeneity ranges with regard to Al/Si which, however, vary as a function of pressure: at low pressures (3–5 kbar) Al/Si is 2.77–2.94 versus 2.33–2.55 at high pressures (15–20 kbar). Outside of these homogeneity limits, dumortierite was found to coexist with quartz or corundum, depending on the starting composition. Whereas synthetic dumortierite invaribly contains 1.0 boron atom per formula unit (p.f.u.) based on 18 oxygens, the water contents vary drastically as a function of pressure and temperature (1.32–2.30 wt.% H2O or 0.85–1.47 H p.f.u.). H2O is an essential component in dumortierite. Structural formulae based on complete chemical analyses of the dumortierites synthesized reveal that there is invariably an Si-deficiency against the ideal number of 3.0 p.f.u. In the calculation procedure used here, this deficiency is balanced by assuming tetrahedral Al. The remaining Al, taken to occupy the octahedral sites, is always below the ideal number of 7.0 p.f.u. Charge-balancing the structure with the hydrogen found analytically leads to two different mechanisms of H incorporation: (1) 3H+ + octahedral vacancy for Al[6]; (2) H+ + tetrahedral Al for Si[4]. Dumortierite synthesized at high fluid pressure contains little Al[4] and, thus, little H+ of type 2; its hydrogen is predominantly present as type 1. Conversely, dumortierite formed at low fluid pressures is high in Al[4] and hydrogen type 2. The amounts of hydrogen type 1 in low-pressure dumortierites decrease with rising temperatures of synthesis. Typical structural formulae are: (Al6.670.33)[Al0.49Si2.51–O13.53(OH)1.47](BO3) for a low-pressure product, and (Al6.680.32)[Al0.09Si2.91O13.94(OH)1.06](BO3) for a high-pressure product. Independently of the synthesis conditions, dumortierite was found always to be orthorhombic, with b0/a0 deviating slightly, but significantly from the valid for hexagonal lattice geometry. As a function of increasing Al/Si in the synthetic crystals, their a0, c0, and V0 rise, whereas b0 decreases. Thus b0/a0 decreases most sensitively with rising Al/Si and also with growing Al[4]. More experimentation is required before the compositional variations of dumortierite found here can be applied successfully to geothermobarometry of natural rocks.  相似文献   

17.
18.
Almandine, although decomposing in the presence of metallic iron into the anhydrous subsolidus assemblage fayalite + ferrocordierite + hercynite solid solution at low pressures, melts incongruently to hercynitess + quartz + liquid at 10 kb. At pressures between about 12 and 20 kb the products of incongruent melting are hercynitess + liquid only, and at still higher pressures almandine melts congruently. For the intermediate pressures between 2 and 10 kb not investigated a sequence of probable breakdown and melting relations involving the phases ferrocordierite, fayalite, hercynitess, quartz, and liquid is derived through Schreinemakers' analyses.The lower temperature stability limit of almandine in the presence of water at low oxygen fugacities and pressures of 15 to 20 kb lies between 550° and 600° C as at low pressures. It is marked, however, by the breakdown to a hydrous assemblage involving chloritoid and the new phase aluminous deerite. Since the anhydrous melting at these pressures occurs between 1300° and 1400° C, the thermal stability range of almandine increases drastically with pressure. Its upper breakdown limit shows in principle a similar behavior as those of other garnet end members.  相似文献   

19.
Various members of the KAlSi3O8-BaAl2Si2O8 feldspar series are hydrothermally synthesized. Cellparameters of these are calculated from diffractometer patterns and found to be similar to those of Gay and Roy. A variation diagram is constructed correlating Cn-content and values of ΔFeKα(2θ(111)CaF2—2θ(004)Fsss), which gives $${\text{Mol}}\% {\text{ Cn = 229}}{\text{.83}}\Delta {\text{2}}\theta ---{\text{190}}{\text{.81}}$$ by a least square regression fitting. Phase equilibria relation in the solidus-liquidus-region for the KAlSi3O8-BaAl2Si2O8-H2O system at 1000 kg/cm2 are investigated. It is found to be a case of simple solid solution in a binary system, with reservations at the potassium-rich side of the system. Goranson (1938) gives a temperature of about 1000°C at 1000 kg/cm2 \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) for the incongruent melting of sanidine, but the authors prefer a value around 930°C at the same \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) . Reaction products of starting materials on the join KAlSi2O6-BaAl2Si2O8 and KAlSiO4-BaAl2Si2O8 gave no experimental hint for replacement of K+ by Ba++.  相似文献   

20.
The pressure-temperature stability field of Mg-staurolite, ideally Mg4Al18Si8O46(OH)2, was bracketed for six possible breakdown reactions in the system MgO-Al2O3-SiO2-H2O (MASH). Mg-staurolite is stable at water pressures between 12 and 66 kbar and temperatures of 608–918 °C, requiring linear geotherms between 3 and 18 °C/km. This phase occurs in rocks that were metamorphosed at high-pressure, low-temperature conditions, e.g. in subducted crustal material, provided they are of appropriate chemical composition. Mg-staurolite is formed from the assemblage chlorite + kyanite + corundum at pressures <24 kbar, whereas at pressures up to 27 kbar staurolite becomes stable by the breakdown of the assemblage Mg-chloritoid + kyanite + corundum. Beyond 27 kbar the reaction Mg-chloritoid + kyanite + diaspore = Mg-staurolite + vapour limits the staurolite field on its low-temperature side. The upper pressure limit of Mg-staurolite is marked by alternative assemblages containing pyrope + topaz-OH with either corundum or diaspore. At higher temperatures Mg-staurolite breaks down by complete dehydration to pyrope + kyanite + corundum and at pressures below 14 kbar to enstatite + kyanite + corundum. The reaction curve Mg-staurolite = talc + kyanite + corundum marks the low-pressure stability of staurolite at 12 kbar. Mg-staurolite does not coexist with quartz because alternative assemblages such as chlorite-kyanite, enstatite-kyanite, talc-kyanite, pyrope-kyanite, and MgMgAl-pumpellyite-kyanite are stable over the entire field of Mg-staurolite. Received: 16 April 1997 / Accepted: 24 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号