首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have studied the turbulent processes in the central plasma sheet using the tailward alignments of THEMIS satellites. Fluctuations of the plasma bulk velocity and corresponding eddy-diffusion coefficients were calculated using the simultaneous data obtained by THEMIS satellites situated inside the central plasma sheet between approximately 5 and 30 Earth's radii. The instantaneous profiles of eddy-diffusion coefficients show an increase with distance from the Earth in the tailward direction. This result agrees with previous statistical studies, and it is relevant for the understanding of the dynamics of the turbulent plasma sheet.  相似文献   

2.
PROMICS-3 is a plasma experiment flown in the Russian project Interball. It performs three-dimensional (3D) measurements of ions in the energy range 4 eV–70 keV with mass separation and of electrons in the energy range 12 eV–35 keV. The Interball project consists of two main satellites, the Tail Probe and the Auroral Probe, each with one subsatellite. The Interball Tail Probe was launched on 3 August 1995, into a 65° inclination orbit with apogee at about 30 RE. Both main satellites carry identical PROMICS-3 instruments and thus direct comparisons of the particle distributions will be possible once the Auroral Probe is launched. Furthermore, PROMICS-3-Tail is the first instrument measuring the 3D ion distribution function in the magnetospheric boundary layers at high latitudes. In this paper we describe the PROMICS-3 instrument and show initial results from the Tail probe, measurements of the mag-netosheath, plasma sheet, and ring current plasmas.  相似文献   

3.
Auroras have been extensively studied using images obtained by space-borne experiments. We use global UVI images obtained from Polar and simultaneous plasma data obtained by the 3D instrument on Wind from the near-earth plasma sheet to study the dynamics of auroras with different size and intensity. Unstable phase space ion distributions are detected in the plasma sheet under diverse geomagnetic and solar wind IMF conditions (positive and negative Bz) and at all phases of a substorm. These results indicate that plasma instability processes with different disturbance levels operate in the plasma sheet and produce a continuum of auroral size and intensity. The criteria for triggering an instability are dependent on the local properties of the plasma distributions. These observations suggest a new framework to integrate previous and current results and a new way to examine the causal relationships of auroral and plasma sheet dynamics.  相似文献   

4.
Low frequency stochastic variations of the geomagnetic AE-index characterized by 1/fb-like power spectrum (where f is a frequency) are studied. Based on the analysis of experimental data we show that the Bz-component of IMF, velocity of solar wind plasma, and the coupling function of Akasofu are insufficient factors to explain these behaviors of the AE-index together with the 1/fb fluctuations of geomagnetic intensity. The effect of self-organized criticality (SOC) is proposed as an internal mechanism to generate 1/fb fluctuations in the magnetosphere. It is suggested that localized spatially current instabilities, developing in the magnetospheric tail at the initial substorm phase can be considered as SOC avalanches or dynamic clusters, superposition of which leads to the 1/fb fluctuations of macroscopic characteristics in the system. Using the sandpile model of SOC, we undertake numerical modeling of space-localized and global disturbances of magnetospheric current layer. Qualitative conformity between the disturbed dynamics of self-organized critical state of the model and the main phases of real magnetospheric substorm development is demonstrated. It is also shown that power spectrum of sandpile model fluctuations controlled by real solar wind parameters reproduces all distinctive spectral features of the AE fluctuations.  相似文献   

5.
The specific features of the diurnal and seasonal variations in different characteristics of two Pi2 geomagnetic pulsation groups (observed during magnetospheric substorms and when these substorms are absent) and the pulsation generation geophysical conditions have been experimentally studied based on observations at the Borok midlatitude observatory. It has been indicated that the dynamics of the occurrence frequency of Pi2 substorm and nonsubstorm bursts and their amplitude, duration, and intervals between peaks depending on the local time and season is identical in many respects. It has been found that substorm Pi2 bursts are mostly observed when the IMF is sunward and the solar wind electric field (Ey) is positive, whereas nonsubstorm bursts are observed when the IMF is antisunward and Ey is negative. The fundamental differences in the diurnal and seasonal variations in index α, which characterizes the slope of the distribution function of the two-group Pi2 burst amplitudes, have been revealed. It has been found that the index α value substantially depends on Ey and the IMF longitude (ψ). It has been assumed that the plasma sheet turbulence of the metastable magnetotail is responsible for reconnection and the generation of substorm and nonsub-storm Pi2 pulsation bursts.  相似文献   

6.
The structure and dynamics of auroras in the midnight sector during substorms, which develop during the magnetic storm main phase as compared to the characteristics of a typical auroral substorm, have been studied using the ground-based and satellite observations. It has been found out that a difference from the classical substorm is observed in auroras during the magnetic storm main phase. At the beginning of the storm main phase, the series of pseudobreakups with the most pronounced jump-like motion toward the equator shifts to lower latitudes. The substorm expansion phase can be observed not only as arc jumps to higher latitudes but also as an explosive expansion of a bright diffuse luminosity in all directions. During the magnetic storm main phase, auroras are mainly characterized by the presence of stable extensive rayed structures and by the simultaneous existence of different auroral forms, typical of different substorm phases, in the TV camera field of view.  相似文献   

7.
The solar wind–magnetosphere coupled system is characterized by dynamical processes. Recent works have shown that nonlinear couplings and turbulence might play a key role in the study of solar wind–magnetosphere interaction processes.Within this framework, this study presents a statistical analysis aimed to investigate the relationship between solar wind MHD turbulence and geomagnetic activity at high and low latitudes as measured by the AE and SYM-H indices, respectively. This analysis has been performed for different phases of solar cycle 23. The state of turbulence was characterized by means of 2-D histograms of the normalized cross-helicity and the normalized residual energy. The geomagnetic response was then studied in relation to those histograms.The results found clearly show that, from a statistical point of view, solar cycle 23 is somewhat peculiar. Indeed, good Alfvénic correlations are found unexpectedly even during solar activity maximum. This fact has implications on the geomagnetic response as well since a statistical relationship is found between Alfvénic fluctuations and auroral activity. Conversely, solar wind turbulence does not seem to play a relevant role in the geomagnetic response at low latitudes.  相似文献   

8.
9.
2004年7月14日TC-1卫星在近地磁尾(-9.3Re,-5.4Re,1.2Re)附近观测到了伴随有持续尾向流的等离体片变薄和偶极化过程.尾向流持续时间为32分钟.偶极化过程中磁场By分量没有明显变化.在偶极化过程发生两分钟之后,地面台站观测到的Pi2脉动.ACE卫星的观测表明行星际磁场有弱的南向行星际磁场(-2nT),持续时间约55分钟.Imagine卫星在电离层区域没有观测到极光出现.和伴随有极光增亮的亚暴过程相比,南向行星际磁场明显较弱,且持续时间短.TC-1卫星和ACE卫星的联合观测表明尾部释能有大有小,并非达到某值才能发生.但能量小时,不能够引起极光亚暴.其次南向行星际磁场有可能与近地磁尾尾向流有密切关系.  相似文献   

10.
中近磁尾等离子体片统计特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文使用Cluster-C1卫星的CIS仪器和FGM仪器测量得到的质子通量数据和计算的β数据,判断Cluster卫星在地球磁尾不同位置位于等离子体片内的概率.使用2001—2004年7—11月的Cluster-C1数据,分别在行星际磁场南向和北向时,得出X-10RE区域内卫星位于等离子体片的概率在Y-Dz平面的分布图(Dz是卫星到中性片的距离).通过对比行星际磁场南向和北向时的卫星位于等离子体片的概率的分布图,我们发现等离子体片在行星际磁场南向时比在行星际磁场北向时要薄,并且这个效应在磁尾晨昏两侧比在午夜附近明显,同时我们还发现等离子体片在晨侧比在昏侧厚.  相似文献   

11.
本文根据OMNI、TC-2卫星、LANL系列卫星、Cluster星簇卫星(C1-C4)以及加拿大的8个中高纬地磁台站的观测数据,研究了2005年8月24日强磁暴(SYM-Hmin~ -179 nT)主相期间的强亚暴(ALmin~ -4046 nT)事件特征.该强磁暴在大振幅(IMF Bz min~ -55.57 nT)、短持续时间(~90 min)的行星际磁场条件下产生,有明显的磁暴急始(SSC),强度较大且持续时间较短.发生在磁暴主相期间的亚暴发展的主要特征如下:亚暴增长相期间,C1-C4卫星先后穿越中心等离子体片;亚暴膨胀相触发后,在近地磁尾(X~-6RE)可观测到磁场偶极化现象;等离子体无色散注入区在亚暴onset开始后迅速沿经向扩展,但被限制在有限的经度范围;磁纬60°附近,Pi2地磁脉动振幅超过了100 nT.膨胀相开始后,在中、高磁纬地磁台站可观测到负湾扰,近地磁尾可观测到Pi2空间脉动,中磁尾区域可观测到尾向流、磁重联以及O+/H+数密度比值在亚暴onset之后增大等现象.分析表明该强磁暴主相期间的强亚暴现象发生时序是自内向外:X~-6RE处TC-2观测到磁场偶极化(~09:42:30 UT),同步轨道卫星LANL1994-084观测到等离子体无色散注入(~09:44:30 UT),X~-17.8RE处C1观测到磁场重联(~09:45:30 UT),由此推断该亚暴事件很可能是近地磁尾不稳定性触发产生,其发生区域距离地球很近.  相似文献   

12.
The density and temperature of the plasma electron component and wave emission intensity in the topside ionosphere were measured by the INTERCOSMOS-19 satellite. In the subauroral ionosphere, a decrease in the plasma density correlates with an increase in the plasma electron component temperature. In this case, the additional increase in the electron component temperature was measured in regions with increased plasma density gradients during the substorm recovery phase. In a linear approximation, the electromagnetic wave growth increments are small on electron fluxes precipitating in the auroral zone. It has been indicated that Bernstein electromagnetic waves propagating in the subauroral topside ionosphere can intensify in regions with increased plasma density gradients on electron fluxes orthogonal to the geomagnetic field, which are formed when plasma is heated by decaying electrostatic oscillations of the plasma electron component. This can be one of the most important factors responsible for the intensification of auroral kilometric radiation.  相似文献   

13.
Measurements of the plasma parameters and magnetic field upon magnetopause crossings by the THEMIS-А satellite during the large magnetic storm of November 14, 2012, are analyzed. The main specific feature of this event is the magnetopause crossing at the time of the magnetic-storm maximum. An imbalance of total pressure on the magnetopause reaching up to ~40% has been observed. An abrupt turn of the magnetic field immediately on the magnetopause is recorded. Inside the magnetosphere, plasma motions have been observed, both along the magnetopause and inward, at velocities of ~100–300 km/s. Variations in geomagnetic parameters are analyzed before and after the crossing. It is shown that specific features of the observed crossing may be associated with a sharp change in the magnetospheric current systems during the magnetospheric substorm.  相似文献   

14.
The superdense plasma sheet in the Earth's magnetosphere is studied via a superposition of multispacecraft data collected during 124 high-speed-stream-driven storms. The storm onsets tend to occur after the passage of the IMF sector reversal and before the passage of the stream interface, and the storms continue on for days during the passage of the high-speed stream. The superdense phase of the plasma sheet is found to be a common feature of high-speed-stream-driven storms, commencing before the onset of the storm and persisting for about 1 day into the storm. A separate phenomenon, the extra-hot phase of the plasma sheet, commences at storm onset and persists for several days during the storm. The superdense plasma sheet originates from the high-density compressed slow and fast solar wind of the corotating interaction region on the leading edge of the high-speed stream. Tracking the motion of this dense plasma into and through the magnetosphere, plasma transport times are estimated. Transport from the nightside of the dipole to the dayside requires about 10 h. The occurrences of both the superdense plasma sheet and the extra-hot plasma sheet have broad implications for the physics of geomagnetic storms.  相似文献   

15.
A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ~ ?400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.  相似文献   

16.
Using data from THEMIS spacecraft we investigated transverse to the magnetic field mutually perpendicular electric and magnetic components of ballooning type perturbations with periods 60–240 s, which are observed in the magnetospheric plasma sheet during the period preceding substorm onset. With applying Hilbert transform, we analyzed the phase relations between them. It is shown that the perturbations are dominated by radial electric and azimuthal magnetic (that is, toroidal) components which are usually in phase or out-of-phase. Along with them, approximately 2.5 times less intense azimuthal electric and radial magnetic components are present, which are more often phase-shifted by π/2. It is concluded that the observed perturbations are not a simple consequence of the development of plasma sheet ballooning instability, leading to the growth of strongly elongated along the magnetotail ballooning structures. It is pointed out that this conclusion is confirmed by simultaneous ground-based observations of magnetically conjugate auroral structures.  相似文献   

17.
The interaction between the Alfvén wave and turbulent sheet (TS) with an anomalous conductivity has been considered. High frequency turbulence causes the appearance of not only anomalous field-aligned plasma conductivity but also cross-field conductivity. Alfvén waves can be partially reflect from TS, be absorbed in this sheet, and pass through TS. When field-aligned conductivity is predominant, the relative effectiveness of these processes strongly depends on a cross-field wave scale. If TS is thin as compared to the Alfvén wavelength, the resistive Alfvén wave (λ A ) characterized by the field-aligned resistivity and Alfvén velocity above the sheet is the characteristic parameter responsible for the wave-sheet coupling. A comparison of the loss, estimated using the analytical relationships for a thin sheet and numerically calculated based on the complete formulas for a sheet with a finite thickness, indicates that the approximation of a thin sheet results in reasonable estimates at all wave scales except very small ones. The developed model has been applied to the interpretation of the results of the works on Pi2 pulsation damping during the substorm expansion phase, which indicated that the damping decrement increases at large substorm amplitudes. The estimates indicate that this increase in damping is related to the appearance of anomalous resistivity in the case when field-aligned currents exceed the threshold values necessary for excitation of high frequency turbulence.  相似文献   

18.
本文利用2001年至2005年间CHAMP卫星及DMSP(F13,F15)卫星观测数据,对亚暴发生前后,亚暴初始位置所在磁地方时(Magnetic Local Time,MLT)东侧2h(+2h,MLT)至西侧4h(-4h,MLT)范围内等离子体对流速度(Vy)及热层纬向风速度(Uy)的变化进行了统计学分析.研究发现在亚暴发生后的1.5h内,所有MLT区间的Vy均明显增大,且峰值位置的地磁纬度向赤道侧移动,1.5h后,Vy减小,峰值的纬度向极区移动,表明亚暴的发生能显著增强等离子体对流速度;在亚暴发生位置的西侧0~2h内,Vy增幅最大,这表明亚暴对热层的影响主要在西侧,影响最大的区域是西侧0~2hMLT区间;Uy在亚暴发生后3h持续增大,其对亚暴的响应相较于Vy有1.5h的延迟.  相似文献   

19.
亚暴期间磁尾等离子体片离子注入内磁层能够激发电磁离子回旋(EMIC)波.对应于这种EMIC波,地面磁力仪可观测到周期逐渐减小的地磁脉动(IPDP).利用GOES卫星数据,地磁指数和加拿大CARISMA地磁台站的数据,我们研究了IPDP事件的产生与亚暴磁尾注入的关系.同时利用CARISMA地磁台链中的MCMU和MSTK两个台站,从2005年4月到2014年5月期间的观测数据,统计分析了亚暴期间的IPDP事件,研究了IPDP事件的出现率关于季节和磁地方时的分布特征.我们总共获得128个两个台站同时观测的IPDP事件.该类事件关于季节分布的发生率,冬季最小,为13.28%,春季最大,为32.81%,结果表明IPDP事件关于季节分布的发生率受到电离层电导率及亚暴发生率的影响.两个台站同时观测到的IPDP事件最大出现率出现在15—18 MLT(磁地方时),结果表明IPDP事件主要由亚暴期间产生的能量离子注入内磁层,西向漂移遇到等离子体层羽状结构(Plume)区的高密度等离子体所激发.  相似文献   

20.
本文利用星簇Cluster的三颗卫星(C1,C3和C4)在2001年和2002年的数据,研究了快速对流事件(RCE, Rapid Convection Event)及其与亚暴的关系.结果显示单点卫星对RCE的观测,不能反映磁尾RCE的真实情况.在2002年7月25日发生的一次RCE事件, C1和C3观测到这次RCE,C4却没有观测到.在三颗卫星联合观测到的306次RCE中,C1观测到215次,C3观测到266次,C4观测到227次.统计研究表明,单点卫星观测到的RCE的平均时间也不能准确反映磁层内的RCE.由此推论在整个中心等离子体片内,快速对流事件所承担的能量和磁通量的输运量,可能远大于单点卫星观测给出的结果.用速度来定义的磁尾爆发性整体流(BBF,Bursty Bulk Flow)与亚暴的关系,比用磁通量定义的RCE与亚暴的关系要更加紧密.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号