首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Chia-Nan (Chiayi-Tainan) area is in the southwestern Taiwan, and is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The Chukuo fault zone is a boundary between the Western Foothill and the Western Coastal Plain in the Chia-Nan area. The nature of the crustal structure beneath the fault zone, especially the eastern part of the fault zone with mountain topography, has not been well known in detailed due to lack of drilling data as well as its limitation in using other geophysical methods, such as active source survey. In this study, we deployed an array with 11 broadband seismic stations to monitor the seismicity of the Chukuo fault zone. The array has recorded more than 1000 microearthquakes around this area. It provides an opportunity to use P- and S-wave travel time data to investigate the both the crustal P- and S-velocity in the fault zone, however due to the nature of the earthquake distribution, the ray density is relatively low at depth between 0 and 7 km. In addition, the uncertainty of S-wave reading for small earthquake also a limit in building precise S-velocity profile, Thus, we take the advantages of using cross-correlation of seismic ambient noise to investigate crustal S-velocity profile in the Chukuo fault area, especially in the mountain area where crustal faulting is a dominated phenomenon. The results indicate that S-wave velocity in the uppermost crust in the Chukuo fault zone is shown to be slower than previous studies. A low velocity layer exists at depth between 1 and 2 km in the east of the Chukuo Fault. The low S-velocity is related to a highly fractured upper crust due to intensive deformation caused by the orogenic process.  相似文献   

2.
花东纵谷断层是中国台湾动力作用和地壳运动变形最强烈的断层之一,其断层运动特征和强震危险程度一直备受学者的关注。文中分别以同震地表位移、1992-1999年震间形变数据为约束,反演2003年成功MW 6.8地震同震位错分布和花东纵谷断层震间运动特征。结果表明:花东纵谷断层北段处于强闭锁状态(闭锁率高达0.9),闭锁深度深(约27 km);南段闭锁程度较弱(闭锁率约0.5),闭锁深度较浅(约12 km);中段闭锁程度与闭锁深度介于南北段之间。另一方面,2003年成功MW 6.8地震微观震中位于震间无震滑移区与闭锁区的过渡带附近。依据同震位错、震间断层运动反演结果,以及历史强震破裂分布特征,分析认为,花东纵谷断层南北段运动方式存在差异性,北段主要以强震形式运动,南段以蠕滑和地震两种形式运动。自1951年花莲-台东ML 7.3地震序列后,花东纵谷断层南段、中段和北段至2016年所累积的矩能量分别等价MW 6.4、MW 7.0、MW 7.4地震;若发生级联破裂,整个断层至2016年所累积的矩能量等价MW 7.5地震。  相似文献   

3.
Abstract: There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 km and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°–60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5–3.0 m along the Yingxiu-Beichuan co-seismic fault, and 1.5–1.1 m along the Doujiangyan-Hanwang fault. Movement of the co-seismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0–20 km from co-seismic fault.  相似文献   

4.
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore.At Half Moon Bay, right-lateral slip and N—S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace.Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5–3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka.The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200–400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr).Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976).  相似文献   

5.
The role of hydrothermal fluids in assisting the activity of strike-slip faults is investigated using a range of new geological, geophysical, and geochemical data obtained on the Argentat fault, Massif Central, France. This fault zone, 180-km-long and 6 to 8 km-width, has experienced coeval intense channeling of hydrothermal fluids and brittle deformation during a short time span (300–295 Ma). According to seismic data, the fault core is a 4-km-wide, vertical zone of high fracture density that rooted in the middle crust (~ 13 km) and that involved fluids in its deeper parts (9–13 km depth). If stress analyses in the fault core and strain analyses in the damage zone both support a left-lateral movement along the fault zone, it is inferred that hydrothermal fluids have strongly influenced fault development, and the resulting fault has influenced fluid flow. Fluid pressure made easier fracturing and faulting in zones of competent rocks units and along rheological boundaries. Repeated cycles of increase of fault-fracture permeability then overpressure of hydrothermal fluids at fault extremity favored strong and fast development of the crustal-scale strike-slip fault. The high permeability obtained along the fault zone permitted a decrease of coupling across the weak fault core. Connections between shallower and lower crustal fluids reservoirs precipitate the decrease of fault activity by quartz precipitation and sulfides deposition. The zones of intense hydrothermal alteration at shallows crustal levels and the zones of fluid overpressure at the base of the upper crust both controlled the final geometry of the crustal-scale fault zone.  相似文献   

6.
潘明臣 《地质与资源》2016,25(3):223-226
鸭绿江断裂带为郯庐断裂带羽状分支的一部分,其动力学机制为燕山期太平洋板块与欧亚板块碰撞.由于剪切作用形成一系列北东向左旋运动为主的壳断裂,切割深度约4 km,最大左行平移距离超过20 km.主断裂两侧地质构造特征可以对比.  相似文献   

7.
宋伟  马学军  贾国欣 《江苏地质》2011,35(4):405-412
1966年邢台地震发生后,震中所在地隆尧地区多次发生规模较大的地裂缝现象,通过实地调查工作,在隆尧县南(经过震中所在地白家寨村)发现一条断续分布的长约17km的地裂缝,在局部伴有地层错动现象。通过地球物理勘探对华北平原地质构造及断层近期运动规律特征做了进一步调查,认为隆尧地裂缝的地层错断现象主要原因是由于断层蠕滑活动形成的,表现为地壳构造运动产生的内应力的积累与释放。另外,长期干旱和过量开采等自然及人类活动因素也会使地下水逐年下降引起地裂缝。  相似文献   

8.
A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network.Checkerboard tests show that our tomographic model has lateral and vertical resolution of~2 km.The high-resolution P-velocity model revealed interesting structures in the seismogenic layer:(1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian f...  相似文献   

9.
开合构造是研究地球开合运动及其构造特征,分析开合构造体系的形成机制,探索地球成因和演化的一种新假说。不同时空尺度的开合构造在地学上存在不同的表现,需要从不同角度开展研究。以亚欧非邻区巨型开合构造区、地中海大型开合构造区、东大别中型开合构造区为例,研究了开合构造理论在大地构造分区、地震活动以及现代大地测量结果解释等方面的应用。研究表明:(1)依据开合构造观点可将亚欧非邻区巨型开合构造划分为俄罗斯构造集群、非洲构造集群、北亚构造集群、中亚构造集群、南亚构造集群及东亚构造集群;(2)亚欧非邻区的强地震活动与构造集群间的新生代开合构造转换带关系密切;(3)地中海大型开合构造区内的地震剖面及震源机制揭示了地中海—土耳其—伊朗—阿富汗构造转换带现今构造运动主要以合为主;(4)东大别中型开合构造周边的狮子山、黄梅、麻城等台站的地倾斜和地应变、周边GNSS和流动重力观测结果揭示了该区周边存在时间尺度较短、量级较弱的由“合”向“开”的趋势转变,开合运动是近期诸多观测数据趋势出现准同步性变化的共同机理。  相似文献   

10.
活动断裂带强烈复杂的构造运动会对地壳岩体产生不同程度的损伤,这些损伤能够显著影响地震破裂、地貌演化和地质灾害等地质过程,并对工程岩体稳定有较大影响,但目前鲜见对大型活动断裂地壳岩体构造损伤的深入研究.本文首次提出地壳岩体构造损伤的科学概念,揭示其具有不可逆性、累积性、非均匀性与愈合性.通过对青藏高原东缘鲜水河断裂带等6...  相似文献   

11.
One of the major tectonic problems in Europe concerns the southwest margin of the East European Platform in the region of the so-called Polish-Danish trough. In general, this margin is assumed to be the Tornquist-Teisseyre (T-T) Line, running approximately from northwest to southeast in this part of Europe. Determination of deep crustal structure of the contact zone between the Precambrian Platform and the Palaeozoic Platform was the main aim of the deep seismic sounding (DSS) programme in Poland in 1965–1982.Deep seismic soundings of the Earth's crust have been made in the T-T Line zone along nine profiles with a total length of about 2600 km. The results of deep seismic soundings have shown that the crust in the marginal zone of the East European Platform has highly anomalous properties. The width of this zone ranges from 50 km in northwest Poland to about 90 km in southeast Poland. The crustal thickness of the Palaeozoic Platform in Poland is 30–35 km, and of the Precambrian Platform 42–47 km, while in the T-T tectonic zone it varies from 50 to 55 km. Above the Moho boundary, in the T-T zone, at a depth of 40–45 km, there is a seismic discontinuity with P-wave velocities of 7.5–7.7 km/s. Boundary velocities, mean velocities and stratification of the Earth's crust vary distinctly along the T-T zone. There are also observed high gravimetric and magnetic anomalies in the T-T zone. The T-T tectonic zone determined in this manner is a deep tectonic trough with rift properties.The deep fractures delineating the T-T tectonic zone are of fundamental importance for the localization of the plate edge of the Precambrian Platform of eastern Europe. In the light of DSS results, the northeastern margin of the T-T tectonic zone is a former plate boundary of the East European Platform.  相似文献   

12.
The Denali fault system forms an arc, convex to the north, across southern Alaska. In the central Alaska Range, the system consists of a northern Hines Creek strand and a southern McKinley strand, up to 30 km apart. The Hines Creek fault may preserve a record of the early history of the fault system. Strong contrasts between juxtaposed lower Paleozoic rocks appear to require large dextral strike-slip or a combination of dipslip and strike-slip displacements along this fault. Thus the fault system may mark a reactivated suture zone between continental rocks to the north and a late Paleozoic island arc to the south, as suggested by Richter and Jones (1973). Major movements on the Hines Creek fault ceased by the Late Cretaceous, but local dip-slip movements continued into the Cenozoic.The McKinley fault is an active dextral strike-slip fault with a mean Holocene displacement rate of 1–2 cm/y. Post-Late Cretaceous dextral offset on this fault is probably at least 30 km and possibly as great as 400 km. Patterns of early Tertiary folding and reverse faulting indicate that the McKinley fault was active at that time and suggest that this fault developed shortly after strike-slip activity ceased on the Hines Creek fault. Oligocene — middle Miocene tectonic stability and late Miocene—Pliocene uplift of crustal blocks may reflect periods of quiescence and activity, on the McKinley fault.The two strands of the Denali fault divide the central Alaska Range into northern, central, and southern terranes. During the Paleozoic—Mesozoic there is evidence for at least two episodes of compressive deformation in the northern terrane, four in the central terrane, and two in the southern. During each, the axis of maximum compressive strain was subhorizontal and about north—south. This pattern suggests a Paleozoic and Mesozoic setting dominated by plate convergence, despite the possible large pre-Late Cretaceous lateral movement on the Hines Creek fault.The Cenozoic pattern of faulting and folding appears compatible with a plate tectonic model of (1) rapid northward movement of the Pacific plate relative to Alaska during the early Tertiary; (2) slow northwestward movement of the Pacific plate during the Oligicene and (3) rapid northwestward movement of the Pacific plate from the end of the Oligocene to the present.  相似文献   

13.
Venezuela is located on the plate boundary zone between the South American continent and the Caribbean plate. A relative movement of 2 cm/year is accommodated by a system of strike–slip faults running from the Andes to the Gulf of Paria. The Interior Range, a moderate-height mountain range, separates the Oriental Basin from the Caribbean. To the south, predominantly Precambrian rocks are outcropping in the Guayana Shield south of the Orinoco River. Results of deep wide-angle seismic measurements for the region were obtained during field campaigns in 1998 (ECOGUAY) for the Guayana Shield and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from 45 km beneath the Guayana Shield, to 39 km at the Orinoco River, and 36 km close to El Tigre, in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.95 km/s. Detailed information was obtained on the velocity distribution within the Oriental Basin. Velocities are as low as 2.2 km/s for the uppermost 2 km, 4.5 km/s down to 4 km in depth, and a maximum depth of 13 km was derived for material with seismic velocities up to 5.9 km/s, interpreted as the base of the sedimentary basin. A gravimetric model confirms the structures derived from the seismic data. Discrete increases in sedimentary thickness along the basin may be associated to extension processes during the passive margin phase in the Cretaceous, or during earlier extension phases.  相似文献   

14.
龙门山断裂带深部构造和物性分布的分段特征   总被引:8,自引:0,他引:8  
根据龙门山断裂带周边的固定数字地震台网和流动地震观测获得的宽频带地震记录,用多种地震学方法研究该地区的地壳上地幔结构。深部结构研究表明,龙门山断裂带物性分布具有显著的分段特征。用远震接收函数H-k叠加方法计算了各个台站的地壳厚度和波速比。地壳厚度总体变化是,地壳从东向西增厚,最小厚度为37.8 km,最大厚度是68.1 km。从东南向西北横跨龙门山断裂带的地壳急剧增厚,从41.5 km增厚至52.5 km。但是,龙门山断裂带两侧地壳厚度的差异在断裂带的南段和北段是不同的。在南段,地壳厚度急剧变化的分界线在中央断裂附近;在中段,分界线在后山断裂附近;在北段,则断裂带两侧地壳厚度差异很小。泊松比的空间分布是,松潘—甘孜地体北部和西秦岭造山带具有低泊松比(ν<0.26),扬子地台具有低—中泊松比(ν<0.27),松潘—甘孜地体南部、三江褶皱带和四川盆地具有中—高泊松比(0.26<ν<0.29)。除龙门山断裂带南段及其附近,大部分地区均不具有超高的泊松比(ν>0.30)。龙门山断裂带南段地壳具有高泊松比(ν>0.30),而北段地壳则为中—低泊松比。高泊松比可以看成是铁镁质组分增加和/或部分熔融的证据,表明那里的下地壳部分熔融是可能的。松潘—甘孜地体东南部地区的下地壳处于富含流体或温度较高的部分熔融状态,它有助于青藏高原的下地壳物质向东运动。青藏高原东部中、上地壳向东运动受刚性强度较大的扬子地台的阻挡,沿龙门山断裂带产生应变能积累。当应变达到临界值,发生急剧的摩擦滑动,释放积累的应变能,产生汶川Ms8.0地震。汶川地震在龙门山断裂带不同地段,表现出不同的破裂特征和余震分布,可能与断层带的分段深部构造差异有关。  相似文献   

15.
A 3D interpretation of the newly compiled Bouguer anomaly in the area of the “Dead Sea Rift” is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins (D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW–SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38–42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness (t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km. Curvature is high again in the southernmost part near the Aqaba region. Solutions of Euler deconvolution were visualised together with modelled density bodies and fit very well into the density model structures. An erratum to this article can be found at  相似文献   

16.
阿尔泰山活动断裂   总被引:13,自引:0,他引:13  
沈军  李莹甄  汪一鹏  宋方敏 《地学前缘》2003,10(Z1):132-141
文中介绍了位于亚洲腹地阿尔泰山地区的活动断裂。中国阿尔泰山 (阿尔泰山西南麓 )和蒙古阿尔泰山 (阿尔泰山的东麓 )以NNW向大型走滑断裂为主 ,科布多断裂是阿尔泰山东麓的一条主要NNW向走滑断裂 ,长度近 70 0km。第四纪中晚期右旋走滑速率可达 6 10mm/a ,其上发现有长逾2 0 0km的古地震形变带。富蕴断裂则是阿尔泰山西南麓的一条主要NNW向断裂 ,中晚第四纪的走滑运动速率为 (4± 2 )mm/a ,在中国阿尔泰山的西端还发育规模相对较小的NNW向右旋走滑断裂 ,中晚第四纪走滑速率为 (2± 1)mm/a。中国阿尔泰山 (阿尔泰山的西南麓 )还发育NWW向右旋走滑逆断裂 ,其规模相对较小 ,至中国阿尔泰山西端NWW向的额尔齐斯断裂具有明显的右旋走滑性质。蒙古阿尔泰山的南端则发育近东西向的左旋走滑逆断裂。在与戈壁阿尔泰山交汇部位 ,左旋走滑运动具主导作用。戈壁阿尔泰山发育的戈壁阿尔泰断裂带断续延伸可达 10 0 0km以上 ,目前的研究认为 ,其滑动速率为 12mm/a。其中的博格德断裂上 195 7年发生了戈壁阿尔泰 8.3级地震 ,形变带长约 2 5 0km。阿尔泰山活动断裂的规模、运动强度和强地震活动表明这里不仅受到遥远的印度板块北向推挤作用的影响 ,而且受到较近的地球动力学过程的影响或控制。  相似文献   

17.
This paper reviews the complex crustal and upper-mantle seismic velocity structure of Ireland and surrounding seas. Data from 11 seismic refraction profiles reveal that onshore Ireland mean crustal velocities range between 6.25 and 6.5 km s−1 with crustal thickness of 28.5–32 km. Superimposed on a three-layer crust, the sedimentary layer has a thickness of approximately 6–8 km at the southern coastline, but only 3–4 km in the vicinity of the Shannon Estuary in western Ireland. The lateral heterogeneity of the upper-crustal layer is pervasive throughout Ireland, with velocities of 5.7–6.2 km s−1 and a layer thickness of 3–10 km. A low-velocity zone is found in the south-east which is interpreted as the buried south-western extension of the Leinster Granite. The mid-crustal layer (6.3–6.7 km s−1) is between 8 and 16 km thick. Significant changes occur in the vicinity of the Shannon Estuary, around the location of the Iapetus Suture Zone. The lower crust is fairly uniform with velocities of 6.8–7.2 km s−1 and a thickness of approximately 8–10 km except towards the south of Ireland where the Moho appears as a transition zone. Offshore Ireland, a two-layer crust with a thickness of 24–26 km beneath the North Celtic Sea Basin and only 14–15 km beneath the Rockall Trough prevails.  相似文献   

18.
Transpression occurs in response to oblique convergence across a deformation zone in intraplate regions and plate boundaries. The Korean Peninsula is located at an intraplate region of the eastern Eurasian Plate and has been deformed under the ENE–WSW maximum horizontal compression since the late Pliocene. In this study, we analyzed short-term instrumental seismic (focal mechanism) and long-term paleoseismic (Quaternary fault outcrop) data to decipher the neotectonic crustal deformation pattern in the southeastern Korean Peninsula. Available (paleo-)seismic data acquired from an NNE–SSW trending deformation zone between the Yangsan and Ulleung fault zones indicate spatial partitioning of crustal deformation by NNW–SSE to NNE–SSW striking reverse faults and NNE–SSW striking strike-slip faults, supporting a strike-slip partitioned transpression model. The instantaneous and finite neotectonic strains, estimated from the focal mechanism and Quaternary outcrop data, respectively, show discrepancies in their axes, which can be attributed to the switching between extensional and intermediate axes of finite strain during the accumulation of wrench-dominated transpression. Notably, some major faults, including the Yangsan and Ulsan fault zones, are relatively misoriented to slip under the current stress condition but, paradoxically, have more (paleo-)seismic records indicating their role in accommodating the neotectonic transpressional strain. We propose that fluids, heat flow, and lithospheric structure are potential factors affecting the reactivation of the relatively misoriented major faults. Our findings provide insights into the accommodation pattern of strain associated with the neotectonic crustal extrusion in an intraplate region of the eastern Eurasian Plate in response to the collision of the Indian Plate and the subduction of the Pacific/Philippine Sea Plates.  相似文献   

19.
The data on catastrophic earthquakes with magnitudes of 8.3 and 8.1 that occurred in the Simushir Island area on November 15, 2006, and January 13, 2007, respectively, were compared with the results of land-sea deep seismic studies by different methods (deep seismic sounding, the correlation method of refracted waves, the earthquake converted-wave method, the common mid-point) in the Central Kuril segment. The structure of the Earth’s crust and the hypocentral zones of these earthquakes were analyzed. It was established that the hypocenter of the main shock of the first earthquake was located at the bend of the seismofocal zone under the island slope of the trench on the outer side of the subsiding lithospheric plate in the rapidly rising granulite-basite (ìbasalticî) crustal layer, which, at depths of 7–15 km, replaced the granulite-gneiss layer. This was accompanied by an increase of the seismic wave velocity from 6.4 to 7.1 km/s. The focus of the second earthquake was located beneath the axis of the deep-sea trench. The aftershocks were concentrated in two bands 60–120 km wide that extend along the trench, as well as in the third zone orthogonal to the island arc. It was shown that the epicenters of the earthquakes are linked with regional faults. The main shock of the first earthquake (November 15, 2006) was interpreted as a thrust fault and the second one (January 13, 2007) was attributed to a normal fault.  相似文献   

20.
Abstract: A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of ~2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least ~10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif’s western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu-Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a ~7 km offset with ~5 km vertical component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号