首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Satellite instruments for the routine global monitoring of NO2 in the atmosphere—the Global Ozone Monitoring Experiment (GOME) on the ERS-2 satellite, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on the ENVISAT satellite, the Ozone Monitoring Instrument (OMI) on the AURA satellite, and the GOME-2 on the MetOp satellite—are briefly described. It is shown that the error of measuring the NO2 total column amount (∼10% for the background conditions in the troposphere) substantially increases in regions subject to anthropogenic pollution. Examples of practically using multiyear satellite measurements for the regional monitoring of NO2 in the troposphere are presented, including mapping the tropospheric NO2 in Russia, identifying the weekly and annual cycles in tropospheric NO2 variations for megalopolises (St. Petersburg, Moscow, Paris), and estimating the long-term linear trend in 1995–2007.  相似文献   

2.
The tropospheric NO2 content over the Moscow region is analyzed on the basis of data of the satellite Ozone Monitoring Instrument (OMI) in the period 2004–2009. The spatial distributions of NO2 are presented, and some of their features are interpreted. The characteristics of the seasonal and weekly cycles of NO2 are described, as are its interannual and long-term variations. The relationship between the variabilities of the NO2 content and the aerological parameters is investigated on different time scales. The mutual influence of regional pollution and meteorological regimes is discussed. The seasonal and weekly NO2 cycles over Moscow are compared with those over the largest worldwide agglomerations.  相似文献   

3.
Processes of mass exchange through the tropopause at extratropical latitudes are studied. For this purpose, balloon data on ozone and water vapor obtained during the LAUTLOS field campaign were analyzed and a trajectory model was used to analyze the origin of air masses and to calculate fluxes through the tropopause. The results of observations and trajectory modeling showed that tropospheric air masses penetrated into the stratosphere by no more than ~2.5 km above the tropopause level during the campaign. Both tropospheric and stratospheric particles are present in this mixing layer. Backward trajectories showed that, at the anticyclone boundary, tropospheric air penetrates into the stratosphere in the form of fine fibrous structures (filaments). The fluxes through the tropopause were also quantitatively estimated by the Wei method with the use of forward and backward trajectories. The spatial structure of the fluxes through the tropopause coincides with the regions of the tropopause inclination and its folds. The absolute values of the fluxes calculated with the use of the Wei method decrease, depending on the length of trajectories at the expense of the filtering-out of a shallow reversible exchange. It is shown that the exchange depth can be controlled by both vertical fluxes in the troposphere and changes in the level of the tropopause itself. The use of isentropic and three-dimensional trajectories made it possible to estimate the contribution of nonadiabatic processes to the stratosphere-troposphere exchange.  相似文献   

4.
The results of measurements of water-vapor vertical profiles in the upper troposphere and stratosphere on board a meteorological balloon with a FLASH-B optical fluorescent hygrometer (Russia) are presented. These data were obtained during two international field campaigns in West Africa (August 2006) and Central America (August 2007). Eleven high-resolution water-vapor vertical profiles measured in the course of these works make it possible to characterize the processes controlling humidity in the tropical tropopause region. Layers with increased humidity are detected in the lower stratosphere over West Africa to the level of the potential temperature 450 K. An analysis of satellite maps of the brightness temperature, balloon ozone measurements, and aerosol scattering, as well as trajectory modeling, display the relation between the observed layers with increased humidity and the phenomena of convective overshooting of the tropopause, as a result of which cold and ozone-depleted air penetrates into the lower stratosphere together with ice particles, which, rapidly sublimating, locally increase the water-vapor concentration. A comparison of the humidity data obtained in West Africa in 2006 and in Central America in 2007 reveals substantial distinctions in values and vertical structures of water vapor, both in the tropopause region and in the middle stratosphere.  相似文献   

5.
Quasi-biennial variations in vertical profiles of ozone, temperature, air pressure, and zonal and meridional wind velocities are analyzed from ozonesonde data obtained at the western European stations of Lindenberg, Hohenpeissenberg, and Payerne. The effect of quasi-biennial variations manifests itself variously in different variables and is nonuniform in altitude. The period of quasi-biennial variations is not constant, and the values of the mean period group mainly around 2 and 2.5 years. As in the North American region, the effects of quasi-biennial variations in different parameters of the stratosphere and troposphere over western Europe are due to a combination of the effects of the quasi-biennial oscillation (QBO) in the equatorial stratosphere, the El Niño-Southern Oscillation (ENSO), and the North Atlantic Oscillation (NAO). The observed 2.5-year variations in stratospheric ozone are related to the equatorial QBO to a larger extent in comparison with variations in other variables. It seems likely that a determining influence on variations in stratospheric wind and temperature is exerted by the ENSO. Variations in tropospheric and stratospheric parameters with a mean period of about 2 years are due to the ENSO and NAO effects.  相似文献   

6.
An automatic spectral complex developed at the Institute of Physics, St. Petersburg State University, is described. This complex is used for regular ground-based spectroscopic measurements of the total NO2 content in the vertical column of the atmosphere during the twilight and daylight hours of the day near St. Petersburg (Petrodvorets). In 2004–2006, a number of ground-based twilight measurements of the total NO2 content were obtained near St. Petersburg, and variations in the NO2 content in the troposphere were estimated from the results of daytime ground-based measurements. An example of the spatial annual mean distribution of the NO2 content (central and northern Europe, northwestern Russia) based on the data of satellite measurements over the period 2003–2005 is presented. This example demonstrates the main sources of anthropogenic pollution. An increase in the mean annual contents of tropospheric NO2 near Moscow and St. Petersburg is preliminarily estimated for the entire period of satellite observations with the GOME instrument at about 30–40% over ten years.  相似文献   

7.
An analysis of the high-latitude ozone balloon sounding data derived from Canadian stations shows that, in the maximum of the 11-year cycle of solar activity (SA), the ozone content in the lower stratosphere is higher than in the SA minimum and, in the SA maximum, the lower stratosphere is warmer and the troposphere is colder than in the SA minimum. The ozone and temperature responses to the equatorial quasi-biennial oscillation (QBO) in the opposite phases of the 11-year cycle of SA show substantial differences: in the SA maximum, the QBO effects in the ozone and temperature cover a wider range of heights, the maxima of the effects manifest themselves at 5–10 km higher, and their amplitudes exceed the amplitudes of the effects in the SA minimum. The results indicate that the QBO is one of the “conductors” of the influence of the 11-year SA cycle in the Canadian sector of the Arctic.  相似文献   

8.
Recently, a theory relating baroclinic neutrality and midlatitudes tropopause height has been proposed. However, GCM results have shown that the dependence of the theory on external parameters is not consistent with that displayed by these numerical experiments. In the present paper we suggest an analytic formula for baroclinic adjustment to the neutrality of Eady waves through tropopause modification. This formula extends considerably the abovementioned theory by taking into account both a simple representation of the stratosphere and the topography. These modifications alter the tropopause condition for a baroclinically neutral state and its sensitivity to the external parameters. In particular, the topography introduces a dependence on the tropospheric vertical wind shear of the neutrality condition. This feature is not present in other models that assume a background state with a zero potential vorticity gradient in the troposphere. We show, furthermore, that the modified neutrality condition has sensitivities that may resemble those displayed by GCM simulations, with respect to the parameters defining the background flow.  相似文献   

9.
The paper describes a lidar and presents the results of lidar sensing of the vertical ozone distribution (VOD); the lidar measurements are analyzed together with data from a network of meteorological stations situated along the 132° E meridian. VODs over Primorye and Japan in the winter period are compared. An analysis showed that an interrelation exists between the subtropical jet stream and the structures of VOD and tropopause inversion layer. Specifically, the region of the VOD local maximum above the tropopause is in the upper part of the tropopause inversion layer and the width of the maximum depends on the distance from the core of the subtropical jet stream. It is found that the local ozone minimum in the lower stratosphere corresponds to the local minimum of the squared Brunt-Vaisala frequency within this same altitude range in the winter season, when two tropopauses frequently overlap. It is conjectured that the local ozone maximum and tropopause inversion layer may be associated with mixing processes in the layer where stratospheric and tropospheric circulation cells come into contact near the core of the subtropical jet stream.  相似文献   

10.
Characteristic features of changes in the vertical distribution and column content of NO2, total ozone, and stratospheric temperature have been revealed as a result of major sudden stratospheric warmings (SSWs). Strong negative anomalies of column NO2, total ozone and stratospheric temperature are caused by the displacement of the stratospheric circumpolar vortex aside from the pole. Strong positive anomalies of column NO2 and total ozone are observed more frequently under SSWs accompanied by splitting of the stratospheric circumpolar vortex and are caused by the transport of stratospheric air from the low latitudes. Major SSWs can lead to significant changes in the vertical profile of NO2. The changes in different stratospheric layers can be opposite to each other when the edge of the polar vortex is over a site of ground-based observations.  相似文献   

11.
Data of an experiment on radio occultation sounding of the atmosphere with the use of GPS signals were used to obtain global distributions of the variances of mesoscale variations in the refractive index in the troposphere and stratosphere. The experiment was carried out with the CHAMP satellite during the period 2001–2005. Measured vertical profiles were smoothed inside 5–10-km-thick layers centered at different altitudes in the troposphere and stratosphere with the use of second-degree polynomials. Deviations from the smoothed quantities and the corresponding variances were obtained for each profile and averaged for each month during the analyzed interval of the CHAMP experiment. Altitude-longitude-latitude inhomogeneities in the distribution of refractive index variances were analyzed. Altitude and latitude distributions of maxima and minima of refractive index variances depend on altitude and season. Turbulence and acoustic gravity waves can be the causes of small-scale and mesoscale variations in the refractive index of the troposphere and stratosphere. The variances of variations in the refractive index are greater in the regions of tropospheric jet streams and in the zones of near-equatorial deep convection. Atmospheric disturbances increase over mountain systems.  相似文献   

12.
Seasonal and latitudinal distributions of amplitudes of quasi-biennial variations in total NO2 content (NO2 TC), total ozone content (TOC), and stratospheric temperature are obtained. NO2 TC data from ground-based spectrometric measurements within the Network for the Detection of Atmospheric Composition Change (NDACC), TOC data from satellite measurements, and stratospheric temperature data from ERA-Interim reanalysis are used for the analysis. The differences in the NO2 TC diurnal cycles are identified between the westerly and easterly phases of the quasi-biennial oscillations (QBO) of equatorial stratospheric wind. The QBO effects in the NO2 TC, TOC, and stratospheric temperature in the Northern (NH) and Southern (SH) hemispheres are most significant in the winter–spring periods, with essential differences between the NH and SH. The NO2 TC in the Antarctic is less for the westerly phase of the QBO than that for the easterly phase, and the NO2 TC quasi-biennial variations in the SH mid-latitudes are opposite of the variations in the Antarctic. In the NH, the winter values of the NO2 TC are generally less during the westerly QBO phase than during the easterly phase, whereas in spring, on the contrary, the values for the westerly QBO phase exceed those for the easterly phase. Along with NO2, the features of the quasi-biennial variations of TOC and stratospheric temperature are discussed. Possible mechanisms of the quasi-biennial variations of the analyzed parameters are considered for the different latitudinal zones.  相似文献   

13.
The results of continuous minute measurements of the surface concentrations of ozone, nitric oxide, nitrogen dioxide, carbon monoxide, and sulfur dioxide during the 2002–2004 period at the environmental station of the Oboukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP), and the Faculty of Geography, Moscow State University (MSU), are discussed. It is shown that the conditions of Moscow’s southwestern region remote from large local pollution sources reflect the general regularities of the variability of trace gases in an urban atmosphere. This is manifested in the mean annual value of the ratio NO/NO2 (a little less than 1), decreased daylight values of O3, increased values of the rest of the trace gases as compared to the background region, and the presence of a secondary nocturnal maximum in the diurnal cycle of O3. The features of the annual and diurnal cycles of the concentrations of the substances under analysis are discussed. In the diurnal cycle of the primary products of combustion (NO and CO), an excess of the morning maximum (over the evening one) is observed during both warm and transition periods and higher values of the night maximum (as compared to the daylight one) are noted for summer. The temperature stratification properties determined from the MSU long-term acoustic sounding data serve as a possible cause for both of the effects revealed. The annual cycle of the concentration of surface ozone is characterized by the highest values for spring and summer. The annual cycles of NO, NO2, CO, and SO2 do not demonstrate any obvious seasonal regularities. A significant seasonal variation of the ratio NO/NO2, which is associated with the oxidizing properties of the urban atmosphere, is revealed. The record high concentrations of trace gases in the atmosphere over Moscow are given, and the meteorological conditions for their accumulation are discussed.  相似文献   

14.
Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ∼0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm−2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm−2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm−2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ∼0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.  相似文献   

15.
The space-time variability of the fields of CO, NO2, and O3 concentrations and contents in the troposphere of northwestern Russia is analyzed on the basis of experimental data and the results of numerical modeling. The influence that the St. Petersburg emission has on the concentrations and contents of CO, NO2, and O3 in the troposphere is estimated for March 2006. A comparison of the measurements of the total CO content and the tropospheric NO2 content with the results of modeling showed a qualitative and, in come cases, quantitative agreement between the results of calculations and experimental data. When synoptic conditions are determined, the St. Petersburg train can be detected at a distance of more than 300 km, which can affect the atmospheric air quality in adjacent countries.  相似文献   

16.
A detailed analysis of climatic trends in the longitudinally averaged temperature, zonal wind velocity, and activity of a stationary planetary wave with the zonal wave number 1 (SPW1) is made for January. The results of analysis indicate that marked climatic temperature variations having opposite signs in the low and high latitudes are observed. These variations cause the relevant variations in the intensity and arrangement of maxima of tropospheric jet flows and, thereby, are responsible for changes in SPW1 propagation conditions. SPW1 propagation from the troposphere into the upper atmosphere is calculated with a linearized model by using the distributions of zonal mean flow that are characteristic of the 1960s and the early 21st century. These calculations indicate that, over the past 40 years, the propagation conditions have improved “on average” and the calculated SPW1 amplitude in the stratosphere and mesosphere of the winter hemisphere has increased substantially. Analysis of the amplitudes of the zonal wind velocity for SPW1 that were obtained from the NCEP/NCAR data is consistent with the results of simulation and shows that some enhancement of SPW1 activity in the lower stratosphere has been actually observed in recent years. These variations in the amplitudes are also accompanied by the enhancement of SPW1 interannual variability.  相似文献   

17.
The results of an analysis of intraweek differences in surface temperature precipitation, and optical aerosol thickness (τ550) in Moscow and in the vertical profiles of air temperature and wind over central Russia within the 2000–2009 period are given. The relation between the weekly cycles of the meteorological parameters and those of anthropogenic pollutions and dynamic processes is studied.  相似文献   

18.
Variations in the concentrations of both primary (PM10, CO, and NOx) and secondary (ozone) pollutants in the atmosphere over the Moscow and Kirov regions, Kiev, and Crimea under the conditions of the anomalously hot summer of 2011 are given and analyzed. The concentrations of ozone, PM10, CO, and NOx in the atmosphere over the Moscow region exceeded their maximum permissible levels almost continuously from late July to late August 2010. The highest level of atmospheric pollution was observed on August 4–9, when the Moscow region was within a severe plume of forest and peatbog fires. The maximum single concentrations of ozone, which exceeded its maximum permissible level two-three times, were accompanied by high concentrations of combustion products: the concentrations of PM10 and CO were also three-seven times higher than their maximum permissible concentrations. The maximum levels of air pollution were observed under the meteorological conditions that were unfavorable for pollution scattering, first of all, at a small vertical temperature gradient in the lower atmospheric boundary layer. The number of additional cases of mortality due to the exceeded maximum permissible concentrations of PM10 and ozone in the atmosphere over Moscow was estimated. Under the weather conditions that were close to those for the Moscow region, the air quality remained mainly satisfactory in the Kirov region, Kiev, and Crimea, which were almost not affected by fires.  相似文献   

19.
We present the results of microwave observations of the ozone content variability in the upper stratosphere and lower mesosphere during a total solar eclipse of March 29, 2006 at the Kislovodsk high-altitude scientific station. An increase in the concentration of mesospheric ozone was recorded during the eclipse. At a height of 60 km, the ozone concentration increased by 40%, which is close to the value of diurnal ozone variations.  相似文献   

20.
The solar climate ozone links (SOCOL) three-dimensional chemistry-climate model is used to estimate changes in the ozone and atmospheric dynamics over the 21st century. With this model, four numerical time-slice experiments were conducted for 1980, 2000, 2050, and 2100 conditions. Boundary conditions for sea-surface temperatures, sea-ice parameters, and concentrations of greenhouse and ozone-depleting gases were set following the IPCC A1B scenario and the WMO A1 scenario. From the model results, a statistically significant cooling of the model stratosphere was obtained to be 4–5 K for 2000–2050 and 3–5 K for 2050–2100. The temperature of the lower atmosphere increases by 2–3 K over the 21st century. Tropospheric heating significantly enhances the activity of planetary-scale waves at the tropopause. As a result, the Eliassen-Palm flux divergence considerable increases in the middle and upper stratosphere. The intensity of zonal circulation decreases and the meridional residual circulation increases, especially in the winter-spring period of each hemisphere. These dynamic changes, along with a decrease in the concentrations of ozone-depleting gases, result in a faster growth of O3 outside the tropics. For example, by 2050, the total ozone in the middle and high latitudes approaches its model level of 1980 and the ozone hole in Antarctica fills up. The superrecovery of the model ozone layer in the middle and high latitudes of both hemispheres occurs in 2100. The tropical ozone layer recovers far less slowly, reaching a 1980 level only by 2100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号