首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A unique sequence of Late Saalian, Eemian and Early Weichselian strata is exposed in a coastal outcrop at Mommark in the western Baltic. The sedimentary facies and faunas reflect palaeoenvironmental changes from an initial freshwater lake followed by marine transgression and interglacial deposition in a palaeo-Baltic sea. The upper part of the Eemian marine record indicates regression followed by lacustrine sedimentation and deposition of Early Weichselian aeolian sediments, which are truncated by an erosional unconformity overlain by a till bed. The lower and middle parts of the sequence have previously been correlated with the European glacial-interglacial stratigraphy on the basis of pollen analysis, while the upper part has been dated for the present study using optically stimulated luminescence (OSL) of samples from the aeolian and glacial deposits. A similar complete glacial-interglacial-glacial succession has not previously been recorded from this area. The Mommark sequence of conformable strata has been subjected to lateral compression, evidenced by folding and low-angle reverse faults. Seismic records from the adjacent waters in the western Baltic reveal a system of buried Quaternary valleys in the area. It is suggested that the interglacial deposition took place in a basin within one of these valleys and that a slab constituting the Mommark sequence, originating from the margin of a valley, has been glaciotectonically displaced northwestwards to the present location.  相似文献   

2.
A new investigation of the coastal cliff section at Mommark in southern Denmark has revealed a complete Eemian interglacial sequence for the first time in the southwestern Baltic area. Environmental changes through the lacustrine and marine interglacial deposits are discussed on the basis of foraminiferal assemblages and stable isotope composition as well as ostracods. In general, the assemblages indicate relatively high temperatures throughout the Eemian, and the Lusitanian foraminiferal species Pseudoeponides falsobeccarii Rouvillois has been reported for the first time from the Eemian of northwest Europe. A floating chronology of the deposits is based on a previously published correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. An initial early Eemian lacustrine phase, with ostracodal indication of deposition in a large freshwater lake, lasted until c. 300 years after the beginning of the interglacial, i.e. to the transition between the regional pollen zones E2 and E3. After that, marine conditions persisted almost throughout the interglacial, and the Cyprina Clay was deposited. The foraminiferal and ostracodal assemblages indicate that relatively deep water prevailed in the area until c. 6000 years after the beginning of the interglacial. However, both the foraminiferal assemblages and the oxygen isotope results show that a trend from relatively high salinity to lower salinity conditions had begun already at about 4000 years. After c. 6000 years the fauna indicates a gradual change to shallower water and further reduction in salinity, the latter also being reflected by a general decrease in the oxygen isotope values. The marine deposition ended at c. 10 600 years after the beginning of the Eemian, i.e. within the topmost part of pollen zone E7. This was succeeded by a late Eemian and early Weichselian freshwater phase.  相似文献   

3.
The modern drainage system of central Poland developed during the Holsteinian, but it originated from the Elsterian glacial tunnel valleys and deglacial residual overflow lakes. In spite of occupation of this area by the Wartanian ice sheet and the following formation of the landscape during deglaciation, a similar river network was renewed during the Eemian. During the Weichselian the Middle Vistula valley was subjected to widespread ice-dam deposition. This resulted in rise of the base level of erosion and in westward deflection of the runoff, connected with development of the Central European spillways. The presented reconstruction of the Middle and Late Pleistocene fluvial network shows that the Holstein and Eemian sea levels were the driving force for river system development in central Poland. The Holstein and Eemian sea levels were very close to the present water level of the Baltic Sea. They made interglacial fluvial patterns roughly similar to the contemporary one, and therefore the main watersheds have been only slightly modified since that time. However, due to the considerable southward extension of the sea during the Eemian and presumably also during the Holsteinian, buried interglacial river deposits in central Poland occur at present well beneath the Holocene alluvia.  相似文献   

4.
The Mommark sequence represents a nearly complete record of sedimentation in the Eemian (MIS 5e), and the diatom succession covers almost the entire interglacial. A floating chronology of the deposits is based on correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. The diatom succession starts with a short freshwater stage followed by a similarly episodic transitional brackish phase, which began c. 300 years after the beginning of the Eemian interglacial. A few hundred years later, simultaneously with the start of deposition of the shallow marine sediment, Cyprina Clay, the flora turns almost fully marine, suggesting salinities clearly higher than at present. The culmination of the marine transgression occurs close to the climatic optimum of the Eemian interglacial, c. 3000 years after the beginning of the interglacial. In the several metres thick Cyprina Clay, only marginal changes in the composition of diatom taxa are noticed. According to the diatom stratigraphy and chronostratigraphy based on regional pollen zones, the total duration of the Eemian Sea phase with brackish/marine conditions was c. 10 500 years. As the sedimentation of the Cyprina Clay ends, the proportions of diatom species thriving in freshwater increase, but the marine taxa remain common. The mixture of species with non-compatible ecological requirements suggests allochthonous input from freshwater and/or tidal estuary environment. The results of this study are consistent with studies of other aquatic fossil assemblage data from this site.  相似文献   

5.
Past environmental changes in the Baltic area are discussed on the basis of pollen and spores recovered from marine sediments in a series of cliff sections at Mommark, in southern Denmark. The sediment succession represents Jessen & Milthers' (1928) Eemian pollen zones c-h, or Andersen's (1961 1975) zones E1/2-E7, as well as the earliest Weichselian pollen zone i, or EW-1, the Herning Stadial. A correlation with annually laminated German sequences (e.g. Bispingen) indicates that the sequence spans approximately 11 000 years. Marine deposition began c. 300 years after the beginning of the Eemian Interglacial Stage and continued to shortly before the end of pollen zone E7, at c. 10 600 years after the beginning of the Eemian. Sedimentation rates varied through the time period represented by the sequence, with initial deposition relatively rapid at c. 0.35 cm yr-1 for the first c. 300 years. Rates then decreased to 0.029 cm yr-1 for the next 2700 years and remained low, though varying, throughout the rest of the sequence. Overall, the rates indicate that sediment supply was highly restricted throughout the interglacial, possibly reflecting the dense forest vegetation that colonized the hinterland.  相似文献   

6.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

7.
One of the most discussed stages in the history of the Baltic Sea is the Ancylus Lake phase. This paper presents detailed information from the Darss Sill threshold area as well as the adjacent basins, i.e. the Mecklenburg Bay and Arkona Basin located in the southwesternmost Baltic. The threshold area was transgressed at the Baltic Ice Lake maximum phase and during the following regression about 10.3 ka BP a river valley was incised in the Darss Sill to a level of 23-24 m below present sea level (b.s.l.). Preboreal sediments in the study area show lowstand basin deposition in the Arkona Basin and the existence of a local lake in Mecklenburg Bay. The lowstand system is followed by the Ancylus Lake transgression that reached a maximum level of 19 m b.s.l. Thus, at the maximum level the water depth was about 5 m over the threshold, and the shore level fall during the Ancylus Lake regression must be in the same range. The Darss Sill area is the key area for drainage of the Ancylus Lake, and if the previously suggested regression of 8-10 m in southeastern Sweden is to be achieved, isostatic rebound must also play a role. The existence of the so-called Dana River in the Darss Sill area cannot be supported by our investigations. We observed no signs of progressive erosion of the Darss Sill area in the Early Holocene, and there are no prograding systems in Mecklenburg Bay that can be related to the Ancylus Lake regression. On the contrary, local lakes developed in Mecklenburg Bay and in the Darss Sill threshold area. In the Darss Sill area, marl was deposited in a lake in the valley that developed after the final drainage of the Baltic Ice Lake. Studies of diatoms and macrofossils, combined with seismic interpretation and radiocarbon dating, provide detailed information about the chronology and the relative shore level of these lake phases as well as about environmental conditions in the lakes.  相似文献   

8.
The Late Pleistocene stratigraphy from the Severnaya Dvina‐Vychegda region of northwestern Russia is revised based on investigations of new localities, revisiting earlier localities, introduction of about 110 new OSL dates and burial depth corrections of earlier published OSL dates, in addition to six new radiocarbon dates. Most of the OSL samples studied here are from fluvial and subaquaeous sediments, which we found to be well bleached. Six chronostratigraphical units and their sedimentary environment are described, with the oldest unit consisting of pre‐Eemian glacial beds. For the first time, Early Weichselian sediments are documented from the region and a fluvial environment with some vegetation and permafrost conditions is suggested to have persisted from the end of the Eemian until at least about 92 ka ago. The period in which a Middle Weichselian White Sea Lake could have existed is constrained to 67?62 ka, but as the lake level never reached the thresholds of the drainage basin, the lake probably existed only for a short interval within this time‐span. Blocking and reversal of fluvial drainage started again around 21?20 ka ago when the Fennoscandian Ice Sheet advanced into the area, reaching its maximum 17?15 ka ago. At that time, an ice‐dammed lake reached its maximum water level, which was around 135 m above present sea level. Drainage of the lake started shortly after 15 ka ago, and the lake was emptied within 700 years. Severe periglacial conditions, with permafrost and aeolian activity, prevailed in the area until about 10.7 ka.  相似文献   

9.
A complete interglacial cycle, named the Fjøsangerian and correlated with the Eemian by means of its pollen stratigraphy, is found in marine sediments just above the present day sea level outside Bergen, western Norway. At the base of the section there are two basal tills of assumed Saalian ( sensu lato ) age in which the mineralogy and geochemistry indicate local provenance. Above occur beds of marine silt, sand and gravel, deposited at water depths of between 10 and 50 m. The terrestrial pollen and the marine foraminifera and molluscs indicate a cold-warm-cold sequence with parallel development of the atmospheric and sea surface temperatures. In both environments the flora/fauna indicate an interglacial climatic optimum at least as warm as that during the Holocene. The high relative sea level during the Eemian (at least 30 m above sea level) requires younger neotectonic uplift. The uppermost marine beds are partly glaciomarine silts, as indicated by their mineralogy, drop stones and fauna, and partly interstadial gravels. The pollen indicates an open vegetation throughout these upper beds, and the correlation of the described interstadial with Early Weichselian interstadials elsewhere is essentially unknown. The section is capped by an Early Weichselian basal till containing redeposited fossils, sediments, and weathering products. Several clastic dikes injected from the glacier sole penetrate the till and the interglacial sediments. Radiocarbon dates on wood and shells gave infinite ages. Amino acid epimerization ratios in molluscs support the inferred Eemian age of the deposit. The Fjøsangerian is correlated with the Eemian and deep sea oxygen isotope stage 5e; other possible correlations are also discussed.  相似文献   

10.
A fully integrated ice‐sheet and glacio‐isostatic numerical model was run in order to investigate the crustal response to ice loading during the Late Weichselian glaciation of the Barents Sea. The model was used to examine the hypothesis that relative reductions in water depth, caused by glacio‐isostatic uplift, may have aided ice growth from Scandinavia and High Arctic island archipelagos into the Barents Sea during the last glacial. Two experiments were designed in which the bedrock response to ice loading was examined: (i) complete and rapid glaciation of the Barents Sea when iceberg calving is curtailed except at the continental margin, and (ii) staged growth of ice in which ice sheets are allowed to ground at different water depths. Model results predict that glacially generated isostatic uplift, caused by an isostatic forebulge from loads on Scandinavia, Svalbard and other island archipelagos, affected the central Barents Sea during the early phase of glaciation. Isostatic uplift, combined with global sea‐level fall, is predicted to have reduced sea level in parts of the central Barents Sea by up to 200 m. This reduction would have been sufficient to raise the sea floor of the Central Bank into a subaerial position. Such sea‐floor emergence is conducive to the initiation of grounded ice growth in the central Barents Sea. The model indicates that, prior to its glaciation, the depth of the Central Deep would have been reduced from around 400 m to 200 m. Such uplift aided the migration of grounded ice from the central Barents Sea and Scandinavia into the Central Deep. We conclude that ice loading over Scandinavia and Arctic island archipelagos during the first stages of the Late Weichselian may have caused uplift within the central Barents Sea and aided the growth of ice across the entire Barents Shelf. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
In the Baltic Sea south of Skåne county in southern Sweden, an over- consolidated marine clay succession on the northeastern slope of Kriegers Flak was observed in shallow seismic data as a unit overlain by younger Weichselian sediments. Two cores were taken from the clay succession. The Foraminifera present were predominantly of two species, Elphidium excavatum and Elphidium albiumbilicatum, reflecting deposition under arctic– boreal conditions. Stable oxygen isotope analyses were performed on foraminiferal tests, and the results show extremely light δ18O values ranging between −11‰ and −12‰. The cause of these extreme values is uncertain but may result from the high influence of meltwater. Brackish conditions are also indicated by the tolerance for low salinity shown by the Foraminifera. Radiocarbon dating shows an infinite age >40000 yr BP. The pollen flora seems mainly to have been redeposited, which makes interpretation difficult. The sea may have entered the Baltic basin during periods with high eustatic levels, an isostatic downloading of the crust, or a combination of both. It is suggested that the deposition of the overconsolidated marine clay succession occurred in the Late Saalian, Early Eemian or Early Weichselian. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Marine sediments from river sections in the Mezen River drainage, northwest Russia, have been analysed for dinoflagellate cysts, foraminifers and molluscs. The sediments were dated by pollen analysis and by reference to the local sea-level history, and are Late Saalian to late Eemian (c. 133 to 119.5 kyr in age). The Late Saalian deglaciation was characterized by Arctic conditions, but a few centuries into the Eemian the Gulf Stream system carried warm Atlantic water into the region. At 129.8 kyr BP there was a marked increase in the influx of Atlantic water, and the advection of warm Atlantic water was stronger and probably penetrated further eastwards than at present. The molluscs, dinoflagellate cysts and foraminifers reflect conditions warmer than present and that the optimum temperature occurred at the time of the early Eemian global sea-level rise. Around 128 kyr BP, the eustatic sea-level rise was curbed by isostatic rebound and accompanying regression and constriction of marine passages to the White Sea. Local, low-saline, stratified basins developed and characterized the next five to six millennia.  相似文献   

13.
The development and termination of the Eemian interglacial is important because it may serve as a model showing how the present warm period might end in the event of no anthropogenic impact. The most important methods for studying the Eemian are outlined and critically evaluated. In spite of interpretation and dating problems, the various proxy data seem consistent enough to allow the conclusion that some 120,000 years ago the warm Eemian climate deteriorated rapidly and drastically. The forest vegetation in West Europe was replaced by a tundra type vegetation, and within 5000 or 10,OOO years the volume of continental ice grew to at least double the present volume, corresponding to a sea level 65 m, perhaps 90 m, below that of today. There is considerable disagreement between sea level estimates deduced from geological evidence and from benthic foraminifera oxygen isotope records.  相似文献   

14.
A time-dependent model for stratification and circulation within the Baltic entrance area (Gustafsson 2000) is tested against observed salinities for the period 1961–1993. Although the Baltic Sea is one of the largest estuarine systems on earth, this model could be applicable to smaller estuarine systems and embayments with tidal exchange. The seasonal cycle of freshwater flux across the sill area does not follow the seasonal cycle of freshwater supply to the Baltic Sea. The seasonal variation of the flux is a combined effect of the seasonal variation in freshwater supply, in Baltic mean sea level, and in dispersion of salt across the sills. The seasonal variation in dispersion of salt is due to the seasonal cycle of sea level variability. The model is used to predict the inflow of high saline water to the Baltic Sea. The resulting inflow time-series is consistent with variations in the deep-water salinity and temperature in the deeper parts of the Baltic Sea. A comparison with previous estimates of the magnitude of major Baltic inflows shows that the model is able to reproduce the characteristics fairly well although the magnitude of the flows of water and salt appears lower than other estimates. It is shown that a climatic change that increases the wind mixing does not significantly change the major inflows. Both increased amplitudes of sea level variations in the Kattegat and decreased freshwater supply to the Baltic Sea substantially increase the magnitude of the inflows. It is shown that deep-water renewal in the Baltic Sea is obstructed during years with high freshwater supply even if the sea level forcing is favorable to a major inflow.  相似文献   

15.
Within the framework of the TIMODAZ project, permeameter tests and isostatic tests were performed on Boom Clay and Opalinus Clay in order to assess the impact of temperature, pore water composition, and confining stress on the sealing of damaged samples of Boom Clay and Opalinus Clay. A microfocus X-ray computed tomography technique was used to visualize the evolution of the sealing process. Compared to the fast sealing of Boom Clay, the sealing of Opalinus Clay was much slower. The heating showed a significant, favorable impact on the sealing behavior of Opalinus Clay under permeameter test conditions, while the sealing behavior of Boom Clay appeared to be unaffected. Tests performed under isostatic conditions did not reveal a significant influence of a heating–cooling cycle on the sealing behavior of these clays. The reappearance of the fractures or holes in the samples after dismantling confirms earlier observations which showed that after sealing, the original mechanical properties are not recovered. In other words, a heating cycle does not seem to induce healing.  相似文献   

16.
Synoptically mapped faunal abundance and faunal composition data, derived from a suite of 24 Norwegian Sea cores, were used to derive sea-surface temperatures for the last glacial maximum (18,000 B.P.), the last interglacial (120,000 B.P.), and isotope stage 5a (82,000 B.P.). Surface circulation and ice cover reconstructions for these three times, deduced from the sea-surface temperatures, suggest the following conclusions: (1) During glacial periods, Norwegian Sea surface circulation formed a single, sluggish, counterclockwise gyre that was caused by wind drag on the ubiquitous sea ice cover; (2) the last interglacial was characterized by a circulation pattern similar to that of today except that the two counterclockwise gyres were displaced toward the east and were more vigorous than they are today. This circulation pattern forced the Norwegian Current into a position close to the coast of Norway and permitted formation of a strong east-west temperature gradient close to the Scandinavian landmass; (3) interglacial periods prior to 120,000 B.P. had similar climatic conditions to the 82,000 B.P. level and were characterized by a weak two-gyre circulation pattern. The southern gyre, driven by wind stress in summer months, was ice covered in winters. The northern gyre had little open water even in summers and was primarily formed by wind drag on sea ice. Atmospheric modifications resulting from these circulation patterns and sea ice conditions produced varying climatic conditions in Scandinavia during interglacials prior to the Holocene. The climate was probably warmer and moister during the last interglacial (Eemian) than it is today. Other interglacials during the last 450,000 years, but prior to the Eemian, were probably colder and drier as the Norwegian Sea was not an important source of heat and moisture.  相似文献   

17.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

18.
《Earth》2009,92(1-4):77-92
The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950–1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500–7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000–4000, 2000–800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000–5000 cal. yr BP), the Medieval Warm Period (c. AD 750–1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities and higher accumulation of organic carbon resulting in amplified hypoxia and enlarged distribution of laminated sediments. We suggest that hydrology changes in the drainage area on long time-scales have, as well as the inflow of saltier North Sea waters, controlled the deep oxic conditions in the Baltic Sea and that such changes have followed the general Holocene climate development in Northwest Europe. Increased hypoxia during the Medieval Warm Period also correlates with large-scale changes in land use that occurred in much of the Baltic Sea watershed during the early-medieval expansion. We suggest that hypoxia during this period in the Baltic Sea was not only caused by climate, but increased human impact was most likely an additional trigger. Large areas of the Baltic Sea have experienced intermittent hypoxic from at least AD 1900 with laminated sediments present in the Gotland Basin in the Baltic Proper since then and up to present time. This period coincides with the industrial revolution in Northwestern Europe which started around AD 1850, when population grew, cutting of drainage ditches intensified, and agricultural and forest industry expanded extensively.  相似文献   

19.
中扬子台地下奥陶统红花园组造礁生物群落主要有五种 :蓝绿藻群落 (S群落 )、Calathium 蓝绿藻群落 (C S群落 )、Batostoma-Calathium群落 (B C群落 )、Archaeoscyphia-Calathium群落 (A C群落 )和Batostoma-Calathium 蓝绿藻群落 (B C S群落 )。群落的演化模式有两种 :①A C群落 /B C群落→C S群落 /B C S群落→S群落;②S群落→C S群落 /B C S群落→A C群落 /B C群落,它们分别对应于上下两期生物礁。群落最大的生态差别可能是其最适合的水深,说明其演化的主要动力可能是相对海平面的变化,根据各群落适应的水深特征,可推测红花园建礁期为一个海平面下降到上升的一个过程,相对海平面变化的最大幅度约为 15m。生物礁内生物群落的演化是海平面变化的灵敏示踪剂,可识别 5m左右的相对海平面的变化.  相似文献   

20.
A 3D structural model for the entire southwestern Baltic Sea and the adjacent onshore areas was created with the purpose to analyse the structural framework and the sediment distribution in the area. The model was compiled with information from several geological time-isochore maps and digital depth maps from the area and consists of six post-Rotliegend successions: The Upper Permian Zechstein; Lower Triassic; Middle Triassic; Upper Triassic–Jurassic; Cretaceous and Cenozoic. This structural model was the basis for a 3D backstripping approach, considering salt flow as a consequence of spatially changing overburden load distribution, isostatic rebound and sedimentary compaction for each backstripping step in order to reconstruct the subsidence history in the region. This method allows determination of the amount of tectonic subsidence or uplifting as a consequence of the regional stress field acting on the basin and was followed by a correlation with periods of active salt movement. In general, the successions above the highly deformed Zechstein evaporites reveal a thickening trend towards the Glückstadt Graben, which also experienced the highest amount of tectonic subsidence during the Mesozoic and Cenozoic. Two periods of accelerating salt movement in the area has been correlated with the E–W directed extension during the Late Triassic–Early Jurassic and later by the Late Cretaceous–Early Cenozoic inversion, suggesting that the regional stress field plays a key role in halokinesis. The final part of this work dealt with a neotectonic forward modelling in an attempt to predict the future topography when the system is in a tectonic equilibrium. The result reveals that many of the salt structures in the region are still active and that future coastline will run with a WNW–ESE trend, arguing that the compressional stresses related to the Alpine collision are the prime factor for the present-day landscape evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号