首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In precast technology, the effective design and construction are related to the behaviour of the connections between the structural members in order to cater for all service, environmental and earthquake load conditions. Therefore, the design and detailing of the connections should be undertaken consistently and with awareness of the desired structural response. In the research presented herein, an analytical expression is proposed for the prediction of the resistance of precast pinned connections under shear monotonic and cyclic loading. The proposed formula addresses the case where the failure of the connection occurs with simultaneous flexural failure of the dowel and compression failure of the concrete around the dowel, expected to occur either when (i) adequate concrete cover of the dowels is provided (d > 6 D) or (ii) adequate confining reinforcement (as defined in the article) is foreseen around the dowels in the case of small concrete covers (d < 6 D). The expression is calibrated against available experimental data and numerical results derived from a nonlinear numerical investigation. Emphasis is given to identifying the effect of several parameters on the horizontal shear resistance of the connection such as: the number and diameter of the dowels; the strength of materials (concrete, grout, steel); the concrete cover of the dowels; the thickness of the elastomeric pad; the type of shear loading (monotonic or cyclic); the pre‐existing axial stress in the dowels; and the rotation of the joint. In addition, recommendations for the design of precast pinned beam‐to‐column connections are given, especially when the connections are utilised in earthquake resistant structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The structural behaviour of precast shear wall-diaphragm connection was compared with the monolithic connection under seismic loading. The monolithic connection was made by using U-bars connecting shear wall and slab, and the precast connection was made by using dowel bars in two steps. Firstly, U-shaped dowel bars from the precast shear wall lower panel and precast slab were connected by the longitudinal reinforcement, and screed concreting was done above the precast slab. Secondly, the shear wall upper panel was connected using the dowel bar protruding from the shear wall lower panel. The gap between the dowel bars and the duct was filled with non-shrink grout. The specimens were subjected to reverse cyclic loading at the ends of the slab. This study also aimed to develop a 3-D numerical model using ABAQUS software. The non-linear properties of concrete were defined by using the concrete damaged plasticity(CDP) model to analyse the response of the structure. The precast dowel connection between the shear wall and slab showed superior performance concerning ductility, strength, stiffness and energy dissipation. The developed finite element model exactly predicted the behaviour of connections as similar to that of experimental testing in the laboratory. The average difference between the results from finite element analysis and experimental testing was less than 20%. The results point to the conclusion that the shear resistance is provided by the dowel bars and the stiffness of the precast specimen is due to the diaphragm action of the precast slab. The damage parameter and the interaction between structural members play a crucial role in the modelling of precast connections.  相似文献   

3.
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.  相似文献   

4.
Dry-assembled precast concrete frame structures are typically made with dowel beam-to-column connections, which allow relative rotation along the beam direction. In the orthogonal direction the rotation of the beam is prevented but again the connections of the superimposed floor elements allow for relative rotation. All the ductility and energy dissipation demand in case of seismic action is therefore concentrated at the base of cantilever columns. Hence, the column-to-foundation connection plays a key role on the seismic performance of such structures. Mechanical connection devices, even if correctly designed for what concerns resistance, may affect the behaviour of the whole joint modifying the ductility capacity of the columns and their energy dissipation properties. An experimental campaign on different mechanical connection devices has been performed at Politecnico di Milano within the Safecast project (European programme FP7-SME-2007-2, Grant agreement No. 218417, 2009). The results of cyclic tests on full scale structural sub-assembly specimens are presented. Design rules are suggested for each of the tested connections on the basis of the experimental observations, and numerical analyses have been performed with hysteretic parameters calibrated on the experimental loops. The seismic performance of structures provided with those connections is investigated through a case study on a multi-storey precast building prototype, which has also been subject to full-scale pseudo-dynamic testing within the same research project at the European Laboratory of Structural Assessment of the Joint Research Centre of the European Commission. The comparison of the results from the structure provided with the different studied connections clearly highlights how some solutions may lead to both reduction of ductility capacity and dissipation of energy, increasing the expected structural damage and the seismic risk.  相似文献   

5.
This paper presents an evaluation of overstrength based on an experimental study on dowelled connections in Cross Laminated Timber (CLT). Connection overstrength needs to be well understood in order to ensure that ductile system behaviour and energy dissipation can be achieved under seismic loading. Overstrength is defined as the difference between the code-based strength, using characteristic material strengths, and the 95th percentile of the true strength distribution. Many aspects contribute to total connection overstrength, which makes its definition challenging. In this study, half-hole embedment tests were performed on CLT to establish embedment strength properties and three point bending tests were performed to determine the fastener yield moment. Different connection layouts, making use of mild steel dowels and an internal steel plate, were tested under monotonic and cyclic loading to evaluate theoretically determined overstrength values and study the influence of cyclic loading on overstrength. Experimental results were compared with strength predictions from code provisions and analytical models for ductile response under monotonic loading. It was found that cyclic loading does not significantly influence overstrength for connections that respond in a mixed-mode ductile way indicating that in future more expedient monotonic test campaigns could be used. This work also provides further experimental data and theoretical considerations necessary for the estimation of a generally applicable overstrength factor for dowelled CLT connections.  相似文献   

6.
This paper describes the results of an experimental and numerical study that focused on multi‐directional behavior of unreinforced masonry walls and established the requisite of the related proposed design equations. The tests were conducted following several sets of multi‐directional loading combinations imposed on the top plane of the wall along with considering monotonic and cyclic quasi‐static loading protocols. Various boundary conditions, representing possible wall–roof connections, were also considered for different walls to investigate the influence of rotation of the top plane of the wall on the failure modes. The results of the tests were recorded with a host of high precision data acquisition systems, showing three‐dimensional displacements of a grid on the surface of the wall. Finite element models of the walls are developed using the commercial software package ABAQUS/Explicit compiled with a FORTRAN subroutine (VUMAT) written by the authors. The experimental results were then used to validate the finite element models and the developed user‐defined material models. With the utility of validated models, a parametric study was performed on a set of parameters with dominant influence on the behavior of the wall system under in‐plane and out‐of‐plane loading combinations. The experimental and numerical results are finally used to investigate the adequacy of ASCE 41 empirical equations, and some insights and recommendations are made. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 tad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.  相似文献   

8.
The concentrically braced frame (CBF) structure is one of the most efficient steel structural systems to resist earthquakes. This system can dissipate energy during earthquakes through braces, which are expected to yield in tension and buckle in compression, while all other elements such as columns, beams and connections are expected to behave elastically. In this paper, the performance of single‐storey CBFs is assessed with nonlinear time‐history analysis, where a robust numerical model that simulates the behaviour of shake table tests is developed. The numerical model of the brace element used in the analysis was calibrated using data measured in physical tests on brace members subjected to cyclic loading. The model is then validated by comparing predictions from nonlinear time‐history analysis to measured performance of brace members in full scale shake table tests. Furthermore, the sensitivity of the performance of the CBF to different earthquake ground motions is investigated by subjecting the CBF to eight ground motions that have been scaled to have similar displacement response spectra. The comparative assessments presented in this work indicate that these developed numerical models can accurately capture the salient features related to the seismic behaviour of CBFs. A good agreement is found between the performance of the numerical and physical models in terms of maximum displacement, base shear force, energy dissipated and the equivalent viscous damping. The energy dissipated and, more particular, the equivalent viscous damping, are important parameters required when developing an accurate displacement‐based design methodology for CBFs subjected to earthquake loading. In this study, a relatively good prediction of the equivalent viscous damping is obtained from the numerical model when compared with data measured during the shake table tests. However, it was found that already established equations to determine the equivalent viscous damping of CBFs may give closer values to those obtained from the physical tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical investigation regarding the seismic behavior of complex-3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (GF) is conducted. The interior connections are assumed to be first perfectly pinned (PP) and then semi-rigid (SR); the two model responses are compared. Three steel building models representing low-, medium- and high-rise buildings, and several strong motions are used. The relative stiffness of SR connections is calculated according to the Richard Model and the Beam Line Theory. The Ruaumoko Computer Program is used to perform the required step-by-step nonlinear seismic analysis. Results indicate that interstory shears and interstory displacements at PMRF may be significantly reduced when interior connections are modeled as SR. Average reductions of up to 20, 46 and 11% are observed for interstory shears, for low-, medium-, and high-rise buildings, respectively. The corresponding reductions for interstory displacements are about 14, 44 and 15%. The contribution of GF to the lateral resistance is considerable, which significantly increases when the connections are modeled as SR; relative contributions larger than 80% are observed. The dissipated energy (DE) at PMRF is larger for the buildings with PP than for the buildings with SR connections indicating that damage at PMRF is reduced. Thus, the effect of the stiffness and the DE at interior connections should not be ignored. However, the design of some elements, particularly columns of the GF, has to be revised; these members may not be able to support the loads produced by the neglected lateral contribution if they are not properly designed.  相似文献   

10.
Reinforced concrete wide beam–column connections have been used in low‐to‐moderate seismicity regions despite little information being available on their seismic performance. This research was conducted to clarify experimentally the hysteretic behaviour and ultimate energy dissipation capacity (UEDC) of this type of existing connection under lateral dynamic earthquake loadings. For this purpose, ? scale models were constructed and tested on a shaking table until they collapsed. The exterior connection behaved as a strong column–weak beam mechanism, and the interior connection as a weak column–strong beam mechanism. The averaged UEDC of the connections in each domain of loading, normalized with respect to the product of the yield strength and yield displacement, were about 6 and 5 for the exterior and interior connections, respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In the analysis and design of unbraced steel frames various models are employed to represent the behaviour of beam-to-column connections. In one such model, termed here as ‘Simple Construction’, pinned connections are assumed when resisting gravity loads, whereas the same connections are assumed to be moment-resistant rigid connections when resisting lateral loads due to an earthquake or wind. Such connections are designed for moments due to lateral loads only; thus, they are not only flexible but may yield when the gravity and lateral loads act concurrently. This paper establishes the seismic performance of two (one 5-storey and the other 10-storey) unbraced steel building frames designed based on the ‘Simple Construction’ technique and on limit state principles. The first part of the paper describes briefly the design of such frames and compares their static responses with the corresponding responses of frames designed based on the ‘Continuous Construction’ assumption. Using realistic moment-rotation behaviour for flexible beam-to-column connections and realistic member behaviour, the non-linear dynamic responses of such frames for the 1940 El Centro record and 2 times the 1952 Taft record have been established using step-by-step time-history analyses. Floor lateral displacement envelopes, storey shear envelopes and cumulative inelastic rotations of beams, columns and connections are presented. The results indicate that the ‘Simple Construction’ frames experience larger lateral deflections while attracting lesser storey shears. During a major earthquake, the columns and connections of the ‘Simple Construction’ frames experience yielding, whereas in ‘Continuous Construction’ frames the beams and columns experience yielding. The cyclic plastic rotations in the connections and in the columns associated with ‘Simple Construction’ frames are found to be considerably higher.  相似文献   

12.
A simplified fatigue-life model is proposed for assessing the seismic inelastic rotational capacity of steel connections. First relations are developed for rigid steel connections under lateral loading. Next this is extended to account for the effects of the welded steel moment frame (WSMF) connections of the so-called pre-Northridge type. The seismic fatigue theory is validated against experimental results. The experiments were conducted under increasing ductility amplitudcs until the onset of fracture. Miner‘ rule was used to convert the test results to given an equivalent constant amplitude cyclic fatigue life. Satisfactory agreement is obtained when comparing the experimental observations with the theoretical predictions.  相似文献   

13.
Liquefaction of seabed under seismic loading is one of the main points that govern the overall stability of submarine pipeline. However, most previous investigations concerned only with free seabed and searched for seismic accumulative excess pore pressure by solving Terzaghi's consolidation equation containing pore pressure source term. It is not able to introduce two-dimensional structures such as submarine pipelines in one-dimensional problem, and it is also not able to obtain the distribution of seismic accumulative excess pore pressure in seabed around submarine pipelines by such a way. In this study, a FEM numerical analysis method for determining the liquefaction of sandy seabed around a buried pipeline under seismic loading is presented. The empirical mode of dynamic increase of pore pressure under undrained shearing induced by seismic loading is incorporated with two-dimensional dynamic consolidation equation and a numerical procedure based on FEM is developed to assess the accumulative excess pore pressure. By numerical computations, the accumulative process of pore pressure and liquefaction potential of seabed soil during seismic loading is evaluated. From a series of numerical computations based on the presented model with various parameters, the effects of soil characteristic parameters and pipeline geometry on seismic accumulative excess pore pressure around submarine pipeline and along the depth of seabed are explored in detail.  相似文献   

14.
Tunnel behaviour under earthquake loading is affected by many factors such as shape, depth and stiffness of the tunnel lining and the nature of the input motion. However, current knowledge on the effects of these parameters on the seismic behaviour of tunnels is limited to lack of experimental or field data. Existing analytical methods are based on assumptions, the validity of which needs to be established using carefully conducted experimental studies and numerical analyses. This paper focuses on the effects of input motion characteristics on seismic behaviour of circular and square tunnels. Dynamic centrifuge tests were carried out on model tunnels using input motions of different amplitude and frequency. Accelerations and earth pressures around the tunnels were measured. Complementary Finite Element analyses were conducted with different types of input motions. Results show that magnitude of the maximum input acceleration plays a crucial role on the maximum and residual lining forces, which the tunnel experiences.  相似文献   

15.
The AISC Seismic Provisions for Structural Steel Buildings (AISC 341-16) provide a testing protocol for qualification of link-to-column connections in eccentrically braced frames (EBFs). This symmetrical testing protocol was developed by conducting nonlinear time history analysis on representative EBFs designed according to the International Building Code. Although the testing protocol is intended for qualification of link-to-column connections, many research programs have employed this recommended protocol for testing of shear links. Recent numerical investigations on constructed EBFs and archetype models showed that links can be subjected to one-sided loadings with significantly higher link rotation angles than the codified limits. A numerical study has been undertaken to develop nonsymmetrical loading protocols for shear links in EBFs. Pursuant to this goal, 20 EBF archetypes were designed according to the ASCE7-16 standard. The main parameters investigated were the link length to bay width ratio (e/L), number of stories, type of EBF, and the ground motion level. The archetypes were subjected to maximum considered earthquake and collapse level earthquake as recommended by FEMA P695. The results showed that the history of link rotation is single sided and depends strongly on e/L and the level of ground motion. Nonsymmetrical loading protocols that depend on the aforementioned variables were developed and are presented herein.  相似文献   

16.
The cyclic behaviour of reinforced concrete columns has been the subject of many experimental studies in recent years. However, most of these studies have focused on the unidirectional loading of columns with square cross‐sections under constant axial loading conditions. In the present study, four types of full‐scale quadrangular building columns were tested under different types of loading, including uniaxial and biaxial loading conditions. The first two specimens of each column type were independently cyclically tested in the strong and weak directions. Bidirectional tests using different loading paths were performed on the other column specimens. All columns were tested under constant axial loading conditions. In this paper, the experimental results are presented, and the global behaviour of tested columns is discussed, particularly focusing on the stiffness and strength degradation because of the increasing cyclic demand. Finally, the deformation‐based performance limits proposed in Part 3 of Eurocode 8 were calculated and compared with the experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement-driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment–curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
<正>This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections,which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant.In order to investigate the seismic performance of this type of structure,several ground motion accelerations with different levels for seismic intensityⅧ,based on the Chinese Code for Seismic Design of Buildings,were selected to excite the model.The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity.In addition to the tests,numerical simulations were also conducted and the results showed good agreement with the test results.Thus,the numerical model is shown to be accurate and the beam element can be used to model this structural system.  相似文献   

20.
In this study, effects of panel zone yielding on the seismic performance of welded-flange-plate (WFP) connections are investigated. In this work, four full-scale beam-to-column connections were used to run the experiments under cyclic loading. The obtained results can potentially lead to a better understanding of the influence of the panel zone inelastic shear deformation on the cyclic behavior of WFP connections for external joints in steel moment resisting frames (SMRFs). The main parameter in the testing program was the panel zone strength having a wide variation to gain the different levels of panel zone yielding. Results showed that all specimens had a high connection rotation capacity to satisfy the requirements of special moment frame connections. However, specimens with different panel zone strengths could provide the different amount of energy dissipation. Severe beam buckling was followed by tearing along the k-line region of the beam in the plastic hinge location, as well as tearing of the beam at the nose of the bottom flange plates which were both observed as a predominant failure mode in the specimens with a stronger panel zone. However, specimens with weak panel zone could develop a significant plastic rotation without causing any major problem to the beam-to-column connection groove welds. Based on mentioned observations and considering the effect of panel zone yielding because of different panel zone strengths on the hysteresis behavior of specimens, failure modes, plastic rotation capacity, and energy dissipation, some modifications were proposed for design requirements of the panel zone strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号