首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the results of Sm–Nd isotopic geochemical and U–Th–Pb geochronological LA–ICP–MS studies, it has been established that the formation of metamorphic rock protoliths of the Stanovoi Complex in the western Dzhugdzhur–Stanovoi Superterrane of the Central Asian Foldbelt took place over the following time spans: 2750–2860 Ma (Ilikan Group of the Ilikan Zone), 1890–1910 Ma (Bryanta Group of the Bryanta Zone), and ~2.0 Ga (Kupuri and Zeya groups of the Kupuri and Zeya zones, respectively). It has been shown that the western part of the Dzhugdzhur–Stanovoi Superterrane was formed ~1.9 Ga ago, as a result of collision of the Neoarchean Ilikan Terrane, the Paleoproterozoic island arc, and the Paleoproterozoic Kupuri–Zeya Terrane. The data make it possible to consider the Kurul’ta, and Zverevo blocks of the Stanovoi Structural Suture and the Ilikan Terrane of the Dzhugdzhur–Stanovoi Superterrane of the Central Asian Foldbelt as constituents of a common terrane.  相似文献   

2.
The contemporary structure of the West Sakhalin Terrane started to form in the Pleistocene and the process of its formation continues up to now in a setting of ENE (60°–90°) shortening. Evidence of the preceding NE (30°–45°) compression was revealed during the study. This compression prevailed in the Eocene–Pliocene. Under the settings of NE (30°–45°) compression, dextral displacements occurred along the West Sakhalin and Tym’–Poronai fault systems, bounding the West Sakhalin Terrane.  相似文献   

3.
This paper reviews the complex crustal and upper-mantle seismic velocity structure of Ireland and surrounding seas. Data from 11 seismic refraction profiles reveal that onshore Ireland mean crustal velocities range between 6.25 and 6.5 km s−1 with crustal thickness of 28.5–32 km. Superimposed on a three-layer crust, the sedimentary layer has a thickness of approximately 6–8 km at the southern coastline, but only 3–4 km in the vicinity of the Shannon Estuary in western Ireland. The lateral heterogeneity of the upper-crustal layer is pervasive throughout Ireland, with velocities of 5.7–6.2 km s−1 and a layer thickness of 3–10 km. A low-velocity zone is found in the south-east which is interpreted as the buried south-western extension of the Leinster Granite. The mid-crustal layer (6.3–6.7 km s−1) is between 8 and 16 km thick. Significant changes occur in the vicinity of the Shannon Estuary, around the location of the Iapetus Suture Zone. The lower crust is fairly uniform with velocities of 6.8–7.2 km s−1 and a thickness of approximately 8–10 km except towards the south of Ireland where the Moho appears as a transition zone. Offshore Ireland, a two-layer crust with a thickness of 24–26 km beneath the North Celtic Sea Basin and only 14–15 km beneath the Rockall Trough prevails.  相似文献   

4.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

5.
The results of studying the influence of fermenting and denitrifying bacteria on some properties of loamy soils are presented. After the treatment of loamy soils by the bacteria, there was a tendency towards a decrease in soil densities, an increase in porosity, a decrease in the angle of internal friction by 10–40% and in the angle of coherence by 25–40%, along with a decrease in the strain modulus by 35–65% in the load range of 0.1–0.2 MPa. Data are analyzed, and microbiological processes that might cause such changes in the soil are indicated.  相似文献   

6.
Variations in the tree line position and glacier activity in the Central and Eastern Altai regions in the Holocene were reconstructed on the basis of analysis of sixty radiocarbon and eighteen dendrochronological dates. The tree line was higher than now in the Early and Middle Holocene, and the climate was warmer and, likely, more humid. Glaciers advanced in the forests 300, 1400, and 3000–6000 years ago. In the last millennium the forest decline at the upper tree limit occurred in 1206–1256, 1445–1501, and 1642–1736.  相似文献   

7.
Doklady Earth Sciences - The new results of experimental study of the Na2MgSiO4–Mg2SiO4 section of the SiO2–MgO–Na2O model system at 22–24 GPa and 1600–1900°C are...  相似文献   

8.
The wedge shaped Dong Tso ophiolitic block is distributed near the transition point from the western to the middle sub-belt of the Bangong-Nujiang suture zone.The ophiolite is characterized by well-developed cumulate rocks that are mainly composed of cumulate and massive gabbros.In the cumulate gabbros,the adcumulate amphiboles are distributed extensively around the plagioclase and residual pyroxene grains; hence,the rocks are named adcumulate amphibole-gabbro.In this study,the formation age of the ophiolite has been estimated to be 166 ± 4 million years (Ma) by the sensitive high-resolution ion microprobe (SHRIMP) Ⅱ U-Pb isotopic analysis of the zircons from the adcumulate amphibole-gabbro; the 40Ar/39Ar plateau age was estimated to be 148.19 ± 1.53 Ma,which should represent the emplacement time of the ophiolite,by isotopic dating of the pure amphibole mineral from the amphibole-schist.Two different suits of volcanic lavas have been recognized in this work.The purple colored pillow basalts have high TiO2 and P2O5 contents,and are rich in light rare earth elements (LREEs),large-ion lithospheric elements (LILEs) and high-field-strength elements (HFSEs),the characteristics that are the typical of the oceanic island basalt (OIB).On the other hand,other massive basaltic andesites of celadon color are poor in MgO; rich in Fe2O3,LREEs,LILEs,and HFSEs; and especially characterized by negative Nb and Ta anomalies,the properties that establish the andesites as continental arc volcanic rocks.It is concluded that hotspots had developed in the old Dong Tso basin,the oceanic basin that had been developing from middle Jurassic (166 Ma) or even before and emplaced northward in late Jurassic (about 148 Ma).  相似文献   

9.
Lykhin  D. A.  Yarmolyuk  V. V.  Vorontsov  A. A.  Travin  A. V. 《Doklady Earth Sciences》2019,488(1):1039-1045
Doklady Earth Sciences - The geochronological and geochemical parameters of the Raduga muscovite–fluorite–euclase–beryl deposit, located within the Kizir–Kazyr zone of...  相似文献   

10.
The Marcus Wake and Magellan guyots formed about 129–74 Ma ago at 10°–30° S and drifted 1700–4400 km to their present-day latitudinal position across the equatorial zone of maximum deposition. Cooling of the Pacific plate brought these guyots to the northern arid zone during the Turonian–Maastrichtian, to depths at which sediment accumulation rates were low and the conditions promoted precipitation of Co-rich Fe–Mn crusts from the Campanian to the present. Nonprecipitation of Co-rich Fe–Mn crusts during the Oligocene was caused by the action of bottom currents. The presence of a hiatus identified in cores from drill holes was used as the basis for reconstruction of the directions of bottom currents in the Oligocene.  相似文献   

11.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   

12.
The main stages of the Paleozoic intrusive magmatism in the Urals, 460–420, 415–395, 365–355, 345–330, 320–315, and 290–250 Ma, as well as two virtually amagmatic periods, 375–365 Ma (Frasnian-early Famennian) and 315–300 Ma (Late Carboniferous), are recognized. The Cambrian-Early Ordovician pause predated the onset of igneous activity in the Ural Orogen, while the Early Triassic pause followed by an outburst of trap magmatism postdated this activity. The interval from 460 to 420 Ma is characterized by mantle magma sources that produced ultramafic and mafic primary melts. The dunite-clinopyroxenite-gabbro association of the Platinum Belt and miaskite-carbonatite association are specific derivatives of these melts. The rift-related (?) Tagil Synform functioned at that time. The volcanic-plutonic magmatism in this oldest magmatic zone of the Uralides comprises gabbro, gabbro-granitoid, and gabbro-syenite series and comagmatic volcanic rocks. After a break almost 20 Ma long, this magmatism ended in the Early Devonian (405–400 Ma) with the formation of small K-Na gabbro-granitoid plutons. The magmatic intervals of 415–395, 365–355, and 320–315 Ma are characterized by the mantle-crustal nature. The first interval accompanied obduction of the oceanic lithosphere on the continental crust. The subsequent magmatic episodes presumably were related to the subduction of the island-arc (?) lithosphere beneath the continent and to the collision. The intense granitoid magmatism started 365–355 Ma ago. As in the following interval 320–315 Ma, the tonalite-granodiorite complexes, accompanied by hydrous basic magmatism, were formed. Amphibole gabbro and diorite served as a source of heat and material for the predominant tonalite and granodiorite. The Permian granitic magmatism had crustal sources. Thus, the mantle-derived Ordovician-Middle Devonian magmatism gave way to the mantle-crustal Late Devonian-Early Carboniferous plutonic complexes, while the latter were followed by the crustal Permian granites. This sequence was disturbed by rifting and formation of continental arcs accompanied by specific Early Carboniferous Magnitogorsk gabbro-granitoid series and Early Permian Stepnoe monzodiorite-granite series, which deviate from the general evolutional trend.  相似文献   

13.
The Junggar basin contains an almost continuous section of Late Carboniferous–Quaternary terrigenous sedimentary rocks. The maximum thicknesses of the stratigraphic units constituting the basin cover make up a total of ~ 23 km, and the basement under the deepest part of the basin is localized at a depth of ~ 18 km. Both the folded framing and the basin edges have undergone uplifting and erosion during recent activity. These processes have exposed all the structural stages of the basin cover. Considering the completeness and detailed stratigraphic division of the section, we can determine the exact geologic age of intense mountain growth and erosion periods as well as estimate the age of orogenic periods by interpolating the stratigraphic ages. During the Permian orogeny, which included two stages (255–265 and 275–290 Ma), the Junggar, Zaisan, and Turpan–Hami basins made up a whole. During the Triassic orogeny (210–230 Ma), the Junggar and Turpan–Hami basins became completely isolated from each other. During the Jurassic orogeny (135–145 and 160–200 Ma), the sedimentation took place within similar boundaries but over a smaller area. During the Cretaceous orogeny (65–85 and 125–135 Ma), the mountain structures formed mainly at the southern boundaries of the basin and along the Karamaili–Saur line. The Junggar and Zaisan basins were separated at that time. The Early and Middle Paleogene were characterized by relative tectonic quiescence. The fifth orogenic stage began in the Oligocene. The recent activity consists of two main stages: Oligocene (23–33 Ma) and Neogene–Quaternary (1.2–7.6 Ma to the present).  相似文献   

14.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

15.
Metre to tens‐of‐metre wide, steeply dipping, greenschist facies shear zones that cut blueschists and eclogites of the Combin and Zermatt–Saas Zones at Täschalp and in adjacent areas of the western Alps were sites of extensive recrystallization driven by fluid flow and deformation. RbSr data imply that these shear zones formed at 42–37 Ma with a systematic younging of structures northward toward, and into, the hangingwall of the Mischabel Structure. Shearing commenced at 400–475 °C and 400–500 MPa and continued as pressures and temperatures fell to 300–350 °C and 300–350 MPa. Individual shear zones were active for 2–3 Myr with later lower grade stages of shearing concentrated into narrow zones. Fluids that infiltrated the shear zones were water rich (XH2O > 0.9). Alteration zones around albite veins and at the margins of serpentinite bodies are penecontemporaneous with these shear zones and formed at approximately the same conditions. The eclogites were exhumed from c. 64 km at 44 Ma to 14–16 km at 42–41 Ma implying exhumation rates of 2–5 cm yr?1. Rapid exhumation was probably achieved by extension aided by buoyancy, following subduction of continental crust, and rapid erosion. The shear zones form part of a regional‐scale extensional system responsible for a significant portion of the exhumation of the subducted oceanic crust.  相似文献   

16.
The North China Craton(NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multistage cratonization(late Archaean and Palaeoproterozoic) and long-term rifting during the Meso–Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian:(1) Neoarchaean crustal growth and stabilization;(2) Palaeoproterozoic rifting–subduction–accretion–collision with imprints of the Great Oxidation Event and(3) Meso–Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified:(1) the Archaean banded iron formation system;(2) Palaeoproterozoic Cu–Pb–Zn and Mg–B systems and(3) a Mesoproterozoic rare earth element–Fe–Pb–Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities.  相似文献   

17.
In northwestern Turkey, the pre-Eocene basement of the Thrace Basin consists of the Strandja-Rhodope metamorphics in the north/northwest, the ?stanbul-Zonguldak Paleozoic sequence in the northeast, a tectonic mixture of the fragments from the Sakarya Continent and pre-Upper Cretaceous ophiolites in the southeast, and the uppermost Cretaceous–Paleocene transgressive sediments. The ophiolites belong to a Dogger-Early Cretaceous oceanic basin (the Northeastern Vardar Ocean) between the Rhodope and Sakarya Continents. The NE-trending oceanic branch closed diachronously during the early Late Malm to the northeast but during latest Early Cretaceous to Late Cretaceous time toward the main Vardar Ocean in the southwest. During the final closure, the suture zone acted as a strike-slip fault zone. The latest Cretaceous–Paleocene transpressional to transtensional activities caused the juxtaposition of different basement types and the development of a tectonic mixed zone (the Biga–Armutlu–Ovacik Zone) between the Rhodope and Sakarya Continents. Under the regional N–S compression, on the plate overlying the north/northeastward-dipping Vardar subduction zone, the southwestward escape of an area of crust bounding by the WNW-trending Balkan-Thrace Dextral Fault Zone to the north and the NE-trending Biga–Armutlu–Ovacik Sinistral Zone to the southeast caused a triangular-shaped and isolated depression area for the deposition of the uppermost Cretaceous–Paleocene transgressive sediments in a transtensional setting. The tectonically bounded depression area constitutes also a necessary accommodation space for the deposition of the initial deposits of Early Eocene age in the Thrace Basin.  相似文献   

18.
The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic–sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo–Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons(1850–800 Ma), developments of marine basins(800–386 Ma), developments of Marine–continental transition basins and super mantle plumes(386–252 Ma), amalgamation of China Continent and developments of continental basins(252–205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China(205–0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso–Cenozoic, are mainly the continental margins, back–arc basins, retroarc foreland basins, intracontinental rifts and pull–apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent–continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan–Mongol–Hinggan, Kunlun–Qilian–Qinling–Dabie–Sulu, Jiangshao–Shiwandashan, Helanshan–Longmengshan, Taihang–Wuling orogenic belts, the Tibet Plateau and the Altun and Tan–Lu Fault belts have importantly influenced on the tectonic–sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre–existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic–paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto–basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo–earthquake events in China.  相似文献   

19.
The purpose of the present study was to study the tectonics of the Yellow Sea. Although oil- gas exploration has been undertaken for more than 30 years in the southern Yellow Sea, the exploration progress has achieved little. There are three tectonic periods with near N–S trending shortening and compression (260–200 Ma, 135–52 Ma and 23–0.78 Ma) and three tectonic periods with near E–W trending shortening and compression (200–135 Ma, 52–23 Ma and 0.78 Ma) at the Yellow Sea and adjacent areas during the Mesozoic and Cenozoic. The Indosinian tectonic period is the collision period between the Sino-Korean and Yangtze Plates, which formed the basic tectonic framework for the Yellow Sea area. There were strong intraplate deformations during the Yanshanian (200–135 Ma) and Sichuanian (135–52 Ma) periods with different tectonic models, which are also the main formation periods for endogenic metallic mineral deposits around the Yellow Sea. The three tectonic periods during the Cenozoic affect important influences for forming oil-gas reservoirs. The Eocene–Oligocene (52–23 Ma) is the main forming period for oil-gas sources. The Miocene–Early Pleistocene (23–0.78 Ma) was a period of favorable passage for oil-gas migration along NNE trending faults. Since the Middle Pleistocene (0.78 Ma) the NNE trending faults are closed and make good conditions for the reservation of oil-gas. The authors suggest that we pay more attention to the oil-gas exploration at the intersections between the NNE trending existing faults and Paleogene– Neogene systems in the southern Yellow Sea area.  相似文献   

20.
《Geodinamica Acta》2001,14(1-3):31-43
This paper describes the Neogene evolution of northwestern Anatolia based on geological data collected in the course of a new mapping program. The geological history of the region, as recorded by the Neogene sedimentary and magmatic rocks that overlie the Paleozoic–Triassic basement, began after a lake invasion during the Early Miocene period with the deposition of shale-dominated successions. They were accompanied by calc-alkaline intermediate lavas and pyroclastic rocks ejected through NNE trending fractures and faults. The Lower–Middle Miocene successions were deformed under a compressional regime at the end of the Middle Miocene. The deposition of the overlying Upper Miocene–Lower Pliocene successions was restricted to within NE–SW trending graben basins. The graben bounding faults are oblique with a major strike-slip displacement, formed under approximately the N–S extension. The morphological irregularities formed during the Miocene graben formations were obliterated during a severe erosional phase to the end of the deposition of this lacustrine succession. The present E–W graben system as exemplified from the well-developed Edremit graben, postdates the erosional phase, which has formed during the Plio-Quaternary period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号