首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We report Rb-Sr analyses of phosphates from nine ordinary chondrites, more than doubling the number of meteorites for which such data are available. Ordinary chondrite phosphates characteristically have Rb/Sr ratios sufficiently low to permit accurate identification of initial 87Sr/86Sr, which is generally (but not in all cases) found to be significantly higher than the more primitive initial 87Sr/86Sr ratios inferred for carbonaceous chondrite refractory inclusions (ALL), basaltic achondrites (BABI), or bulk ordinary chondrites (in the ALL-BABI range). Such elevation of initial 87Sr/86Sr is generally considered to reflect isotopic redistribution during metamorphism, and with a model for Rb/Sr in this environment can lead to an inferred metamorphic timescale. For whole rock Rb/Sr the inferred formation intervals are typically tens of Ma (range nil to > 100 Ma). There is no evident relation between initial Sr elevation and metamorphic grade. There is not a clear difference in initial Sr effects between H and L chondrites; LL chondrites show much less (if any) elevation of initial Sr, but data are available for only two meteorites. For the first time it is possible to make a detailed comparison of initial Sr and I-Xe chronologies for several meteorites: these two potential metamorphic chronometers conspicuously fail to agree, in terms of both age and sequence of ages. A comparably definitive assessment of the comparison between initial Sr and Pb-Pb chronologies is not yet possible, but presently available data suggest that these two approaches to chondrite chronology also fail to agree. Without a correlation with metamorphic grade, or detailed agreement with an independent chronometer, it remains unclear whether initial 87Sr/86Sr in phosphates can be translated into a reliable chronometer for ordinary chondrite metamorphism, at least within simple interpretational frameworks.  相似文献   

2.
Abstract— The timing and processes of alteration in the CV parent body are investigated by the analysis of Sr isotopes, major and trace elements, and petrographic type and distribution of the secondary minerals (nepheline and sodalite) in 22 chondrules from the Allende (CV3) chondrite. The Sr isotopic compositions of the chondrules are scattered around the 4.0 Ga reference line on the 87Sr/86Sr evolution diagram, indicating that the chondrules have been affected by late thermal alteration event(s) in the parent body. The degree of alteration, determined for individual chondrules based on the distribution of nepheline and sodalite, is unrelated to the disturbance of the Rb‐Sr system, suggesting that the alteration process that produced nepheline and sodalite is different from the thermal process that disturbed the Rb‐Sr system of the chondrules. Considering the geochemical behavior of Rb and Sr, the main host phase of Sr in chondrules is likely to be mesostasis, which could be most susceptible to late thermal alteration. As there is a poor connection between the alteration degree determined from abundances of nepheline and sodalite and the disturbance of Rb‐Sr isotopic system, we consider the mesostasis to provide a constraint on the late parent body alteration process. From this point of view, 23 mesostasis‐rich chondrules, including those from literature data, were selected. The selected chondrules are closely correlated on the 87Sr/86Sr evolution diagram, with an inferred age of 4.36 ± 0.08 Ga. This correlation would represent an age of the final major Sr isotopic redistribution of the chondrules in the parent body.  相似文献   

3.
Abstract— The Rb-Sr whole rock and internal systematics of two EH3 chondrites, Qingzhen and Yamato 6901, and of one EL6 chondrite, Khairpur, were determined. Sulfides were separated using a stepwise dissolution technique. The mineral species in each fraction were estimated based on the chemical analyses of 12 major elements. The internal Rb-Sr systematics of the EH3 chondrites are highly disturbed. Fractions corresponding to sulfide phases show excess 87Sr, while other fractions corresponding to silicate phases produce a linear trend on a Rb-Sr evolution diagram. If these linear relations are interpreted as isochrons, the ages of the silicate phases are 2.12 ± 0.23 Ga and 2.05 ± 0.33 Ga with the initial Sr isotopic ratios of 0.7112 ± 0.0018 and 0.7089 ± 0.0032, for Qingzhen and Yamato 6901, respectively. The process of the isotopic disturbance probably involved the breakdown of the major K-bearing sulfide (djerfisherite), and a lack of isotopic exchange between sulfide and silicate phases indicates moderate temperatures of reheating. Although a complete Sr isotopic re-homogenization among silicate phases was not attained, we interpret the Rb-Sr results as indicative of a late thermal event about 2 Ga ago on the parent bodies of these EH3 chondrites. These ages agree well with previously published K-Ar ages. An older isochron age of 4.481 ± 0.036 Ga with a low initial Sr isotopic ratio of 0.69866 ± 0.00038 was obtained for the data from silicate fractions of Khairpur, indicating early petrological equilibration on the parent body of EL6 chondrites.  相似文献   

4.
Abstract— We performed in situ morphological and isotopic studies of graphite in the primitive chondrites Khohar (L3), Mezö‐Madaras (L3), Inman (L3), Grady (H3), Acfer 182 (CH3), Acfer 207 (CH3), Acfer 214 (CH3), and St. Marks (EH5). Various graphite morphologies were identified, including book, veins, fibrous, fine‐grained, spherulitic, and granular graphite, and cliftonite. SIMS measurements of H, C, N, and O isotopic compositions of the graphites revealed large variations in the isotopic ratios of these four elements. The δ15N and δ13C values show significant variations among the different graphite types without displaying any strict correlation between the isotopic composition and morphology. In the Khohar vein graphites, large 15N excesses are found, with δ15Nmax ~+955‰, confirming previous results. Excesses in 15N are also detected in fine‐grained graphites in chondrites of the CH clan, Acfer 182, Acfer 207, and Acfer 214, with δ15N ranging up to +440‰. The 15N excesses are attributed to ion‐molecule reactions at low temperatures in the interstellar molecular cloud (IMC) from which the solar system formed, though the largest excesses seem to be incompatible with the results of some recent calculation. Significant variations in the carbon isotopic ratios are detected between graphite from different chondrite groups, with a tendency for a systematic increase in δ13C from ordinary to enstatite to carbonaceous chondrites. These variations are interpreted as being due to small‐ and large‐scale carbon isotopic variations in the solar nebula.  相似文献   

5.
Abstract— Neodymium, strontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain ~98% of its Sm and Nd inventory. A conventional 147Sm-143Nd isochron yielded an age of 4.53 ± 0.04 Ga (2 σ) and ?143 Nd = 0.45 ± 1.1. An 146Sm-142Nd isochron gives initial 146Sm/144Sm = 0.0076 ± 0.0009 and ?143 Nd = ?2.5 ± 0.4. The Rb-Sr analyses give initial 87Sr/86Sr (I87Sr) = 0.698972 ± 8 and 0.698970 ± 18 for LEW and ADOR, respectively, relative to 87Sr/86Sr = 0.71025 for NBS987. The difference, ΔI87Sr, between I87Sr for the angrites and literature values for Allende CAIs, corresponds to ~9 Ma of growth in a solar nebula with a CI chondrite value of 87Rb/86Sr = 0.91, or ~5 Ma in a nebula with solar photospheric 87Rb/86Sr = 1.51. Excess 53Cr from extinct 53Mn (t1/2 = 3.7 Ma) in LEW86010 corresponds to initial 53Mn/55Mn = 1.44 ± 0.07 × 10?6 and closure to Cr isotopic homogenization 18.2 ± 1.7 Ma after formation of Allende inclusions, assuming initial 53Mn/55Mn = 4.4 ± 1.0 × 10?5 for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The 146Sm/144Sm value found for LEW86010 corresponds to solar system initial (146Sm/144Sm)o = 0.0080 ± 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 ± 0.0009 for crystallization 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated “chondritic” parent body formed from the solar nebula ~2 Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, ~2.6 Ma after the CAIs, to satisfy the Sr and Cr isotopic systematics.  相似文献   

6.
Abstract Merrihueite (K,Na)2(Fe, Mg)5Si12O30 (na < 0.5, fe > 0.5, where na = Na/(Na + K), fe = Fe/(Fe + Mg) in atomic ratio) is a rare mineral described only in several chondrules and irregularly-shaped fragments in the Mezö-Madaras L3 chondrite (Dodd et al., 1965; Wood and Holmberg, 1994). Roedderite (Na,K)2(Mg, Fe)5Si12O30 (na > 0.5, fe < 0.5) has been found only in enstatite chondrites and in the reduced, subchondritic silicate inclusions in IAB irons (Fuchs, 1966; Rambaldi et al., 1984; Olsen, 1967). We describe silica-roedderite-bearing clasts in L/LL3.5 ALHA77011 and LL3.7 ALHA77278, a silica-roedderite-bearing chondrule in L3 Mezö-Madaras, and a silica-merrihueite-bearing chondrule in L/LL3.5 ALHA77115. The findings of merrihueite and roedderite in ALHA77011, ALHA77115, ALHA77278 and Mezö-Madaras fill the compositional gap between previously described roedderite in enstatite chondrites and silicate inclusions in IAB irons and merrihueite in Mezö-Madaras, suggesting that there is a complete solid solution of roedderite and merrihueite in meteorites. We infer that the silica- and merrihueite/roedderite-bearing chondrules and clasts experienced a complex formational history including: (a) fractional condensation in the solar nebula that produced Si-rich and Al-poor precursors, (b) melting of fractionated nebular solids resulting in the formation of silica-pyroxene chondrules, (c) in some cases, fragmentation in the nebula or on a parent body, (d) reaction of silica with alkali-rich gas that formed merrihueite/roedderite on a parent body, (e) formation of fayalitic olivine and ferrosilite-rich pyroxene due to reaction of silica with oxidized Fe on a parent body, and (f) minor thermal metamorphism, possibly generated by impacts.  相似文献   

7.
Abstract— The 65 Ma Chicxulub impact structure, Mexico, with a diameter of ~180 km is the focus of geoscientific research because of its link to the mass extinction event at the Cretaceous‐Tertiary (K/T) boundary. Chicxulub, now buried beneath thick post‐impact sediments, is probably one of the best‐preserved terrestrial impact structures known. Because of its inaccessibility, only limited samples on the impact lithologies from a few drill cores are available. We report major element and Sr‐, Nd‐, O‐, and C‐isotopic data for Chicxulub impact‐melt lithologies and basement clasts in impact breccias of drill cores C‐1 and Y‐6, and for melt particles in the Chicxulub ejecta horizon at the K/T boundary in Beloc, Haiti. The melt lithologies with SiO2 ranging from 58 to ~63 wt% show significant variations in the content of Al, Ca, and the alkalies. In the melt matrix samples, δ13C of the calcite is about ?3%o. The δ18O values for the siliceous melt matrices of Y‐6 samples range from 9.9 to 12.4%o. Melt lithologies and the black Haitian glass have rather uniform 87Sr/86Sr ratios (0.7079 to 0.7094); only one lithic fragment displays 87Sr/86Sr of 0.7141. The Sr model ages TSrUR for most lithologies range from 830 to 1833 Ma; unrealistic negative model ages point to an open Rb‐Sr system with loss of Rb in a hydrothermal process. The 143Nd/144Nd ratios for all samples, except one basement clast with 143Nd/144Nd of 0.5121, cluster at 0.5123 to 0.5124. In an ?Nd‐?Sr diagram, impactites plot in a field delimited by ?Nd of ?2 to ?6, and ?Sr of 55 to 69. This field is not defined by the basement lithologies described to occur as lithic clasts in impact breccias and Cretaceous sediments. At least one additional intermediate to mafic precursor component is required to explain the data.  相似文献   

8.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite.  相似文献   

9.
Abstract— Libyan Desert Glass (LDG) is an impact‐related, natural glass of still unknown target material. We have determined Rb‐Sr and Sm‐Nd isotopic ratios from seven LDG samples and five associated sandstones from the LDG strewn field in the Great Sand Sea, western Egypt. Planar deformation features were recently detected in quartz from these sandstones. 87Sr/86Sr ratios and ?‐Nd values for LDG range between 0.71219 and 0.71344, and between –16.6 and –17.8, respectively, and hence are distinct from the less radiogenic 87Sr/86Sr ratios of 0.70910–0.71053 and ?‐Nd values from –6.9 to –9.6 for the local sandstones from the LDG strewn field. Previously published isotopic ratios from the Libyan BP and Oasis crater sandstones are generally incompatible with our LDG values. LDG formation undoubtedly occurred at 29 Ma, but neither the Rb‐Sr nor the Sm‐Nd isotopic system were rehomogenised during the impact event, as we can deduce from Pan‐African ages of ?540 Ma determined from the regression lines from a total of 14 LDG samples from this work and the literature. Together with similar Sr and Nd isotopic values for LDG and granitoid rocks from northeast Africa west of the Nile, these findings point to a sandy matrix target material for the LDG derived from a Precambrian crystalline basement, ruling out the Cretaceous sandstones of the former “Nubian Group” as possible precursors for LDG.  相似文献   

10.
Calcium-aluminum-rich chondrules which are highly deficient in alkalis were extracted from the carbonaceous chondrite Allende and yield a range of compositions with the lowest measured isotopic composition of (87Sr/86Sr)ALL = 0.69877±0.00002 and identify this material as the earliest known condensate from the solar nebula. Other chondrules suggest the possible presence of even more primitive Sr in this meteorite. This result also shows that some chondritic material formed very near the earliest part of the condensation sequence. Using alkali-deficient planetary objects (Moon, basaltic achondrites, Angra dos Reis, Allende), the Sr data indicate a time interval for condensation of 10 m.y. (from ALL to BABI) if condensation occurred in a solar Rb/Sr environment. A variety of alkali-rich olivine chondrules and CaAl-rich aggregates from Allende fail to determine an isochron and indicate that the element distribution in this meteorite was disturbed later than 3.6ae, possibly recently, in a cometary nucleus. This disturbance requires that the determination of initial 87Sr/86Sr be done on essentially Rb-free phases. Strontium data from equilibrated chondrites and from an iron meteorite establish an interval for metamorphism or differentiation in protoplanetary objects which followed the condensation process by ≈80 mm.y. The chronology for condensation and early planetary evolution obtained for Sr is in disagreement with the 129I chronology but can be brought into agreement, if it is assumed that the high temperature iodine containing phases have not been affected by the metamorphic events determined by Sr.  相似文献   

11.
Abstract— The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil‐ 1. Chicxulub is buried beneath thick post‐impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatàn. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C‐1 and Y‐6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an εtCHUR(Nd)‐εtUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.  相似文献   

12.
Abstract— We report Sr-Nd isotope parameters, rare earth element (REE), and major element data for isolated findings of tektite-like objects from western Siberia (urengoites, South-Ural glass), as well as for two indochinites. The latter were recovered in Vietnam and their overall geochemical characteristics equal those of other tektites from the indochinite subgroup of the Australasian strewn field. The three urengoites (~24 Ma) are extremely silica-rich (89 to 96 wt% SiC2), and their REE abundances vary between 45 and 76 ppm. With LaN/YbN ranging from 7.6 to 10.4 and EuN/EU* between 0.69 and 0.75, their REE distribution patterns match that of average upper crust. The urengoites have present-day ?Sr of +155 to +174 and ?Nd ranging from ?18 to ?23. Their model ages in million years are: TSruR = 1200 up to 4060 and TNdcHUR = 1570 up to 2070. Data points for the urengoites plot colinearly in the Rb-Sr evolution diagram. The age corresponding to the slope is 183 ± 30 Ma (2s?), which is indistinguishable from the intercept age of 211 Ma in the TSrUR vs. l/fRb diagram. Rubidium-strontium and Sm-Nd systematics of the urengoites indicate a heterogeneous precursor material, derived from Paleoproterozoic continental crust, which underwent Rb/Sr fractionation and partial Sr isotope homogenization in Jurassic times. Any relation between the urengoites and the Haughton impact crater, having within 2s? errors an identical age, can be excluded on the basis of isotope relationships and geochemical data. The only known South-Ural glass (~6.2 Ma) is characterized by intermediate SiO2 (65 wt%), high Al2O3 (14 wt%) and CaO (12 wt%), and low FeOTOT (0.4 wt%) contents. This unique tektite-like object contains 110 ppm REE displaying a steeply negative C1 normalized distribution with LaN/YbN of 17, and EuN/Eu1 of 0.71. The Rb abundance (10 ppm) and Rb/Sr ratio are low, and combined with a “crustal” 87Sr/86Sr ratio of 0.722, yielding an unrealistic TSruR age of 2.5 Ga. The Rb-Sr systematics imply a rather recent parent/daughter element decoupling. The TNdCHUR age of the South-Ural glass is ~1690 Ma. Geochemical data suggest that urengoites and the South-Ural glass belong to two discrete groups of tektites, whose source craters remain to be discovered.  相似文献   

13.
The long-lived cosmochronometer87Rb (T 1/2=4.8×1010 yr) is studied. As its origin is partly due tos- and partly tor-process nucleosynthesis it can provide information about the time histories of these processes. The methods of using87Rb quantitatively for a chronological analysis are described. Tentative calculations based on existing experimental data are also presented. The data indicate a larger-process age than thes-process age.  相似文献   

14.
Gobabeb, an ordinary chondrite, was found near Gobabeb, South West Africa in 1969. Chemically and petrographically it belongs in the H4 group. But, in addition to almost homogeneous silicates and chromites, it contains rare, non-opaque spinels that vary greatly in composition from grain to grain. A similar association in an “almost equilibrated” portion of the Mezö-Madaras chondrite has been interpreted as evidence against the hypothesized metamorphic homogenization of ordinary chondrites. A comparison of the chromites and variable spinels from Mezö-Madaras and Gobabeb suggests, instead, that cation exchange is simply slower in the variable spinels than in the chromites. Based on the evidence to date, the survival of these highly variable spinels is not incompatible with a metamorphic episode for both these meteorites.  相似文献   

15.
Abstract— We present an isotope study of noble gases in Divnoe, an anomalous meteorite, and also Rb-Sr and K-Ar dating of this meteorite. The relatively young Rb-Sr age obtained (3.39 Ga) seems doubtful and, most probably, results from weathering or contamination. The ancient K-Ar age (4.67+0.20–0.40), together with clear excess of 129Xe, allows the suggestion of very early formation of the Divnoe meteorite. Concentrations and isotope ratios of noble gases in Divnoe are: 17.9 ≤ 3He ≤ 29.0 × 10?8; 20Ne = 6.22 × 10?8; 2.44 ≤ 36Ar ≤ 5.10 × 10?8; 130Xe = 41.3 × 10?12 cm3/g; 0.079 ≤ 3He/4He ≤ 0.193; 20Ne/22Ne = 0.860; 21Ne/22Ne = 0.927; 3.47 ≤ 40Ar/36Ar ≤ 9.47; 2.22 ≤ 36Ar/38Ar ≤ 3.27; 129Xe/132Xe = 1.09. The exposure age calculated from cosmogenic 3He, 21Ne, and 38Ar is 17.9 ± 0.9 Ma. On the basis of the isotope data for the noble gases and O, and abundances of K, Rb, and Sr, an attempt was made to estimate the relationship of Divnoe to other meteorite types. The O-isotope characteristics of Divnoe are clearly distinct from those of ordinary chondrites, acapulcoites/lodranites, and SNC meteorites (Petaev et al., 1994, Clayton, 1993). In plots of 136Xe vs. 129Xe/130Xe, the Divnoe data fall outside of the data fields for carbonaceous and enstatite chondrites. The light noble gas data, especially the 40Ar/38Ar ratio, and the 40Ar, 38Ar, 3He, and 4He contents of Divnoe differ significantly from those of all meteorite types except diogenites. The K, Rb, and Sr abundances in Divnoe are substantially lower than in most other meteorites. In the concentrations of these elements, as well as in the REE pattern, the Divnoe meteorite is similar only to diogenites. Divnoe probably should be treated as a restite remaining after partial melting of the chondritic mantle of a parent asteroid body.  相似文献   

16.
Some energy levels of Sr 87 shows hyperfine splitting which broadens strontium lines in the solar spectrum. By analysis of two faint photospheric Sr i lines of Multiplet No. 3 an upper limit of the relative Sr 87 content (Sr 87/Sr) of 1/4 has been found. The terrestrial value is 0.07–0.075.The solar abundance of strontium found from the two lines is log Sr = 2.90 in the log H = 12.00 scale. Using the solar rubidium abundance recently determined by the author (Hauge, 1972), one obtains Rb/ Sr = 0.5±0.1. This value is larger than found even in chondrites showing high rubidium content.  相似文献   

17.
Abstract– Rb‐Sr and Sm‐Nd isotopic analyses of the lherzolitic shergottite Grove Mountains (GRV) 99027 are reported. GRV 99027 yields a Rb‐Sr mineral isochron age of 177 ± 5 (2σ) Ma and an initial 87Sr/86Sr ratio (ISr) of 0.710364 ± 11 (2σ). Due to larger uncertainties of the Sm‐Nd isotopic data, no Sm‐Nd isochron age was obtained for GRV 99027. The ε143Nd value is estimated approximately +12.2, assuming an age of 177 Ma. The ISr of GRV 99027 is distinguishable from other lherzolitic shergottites, confirming our previous conclusion that it is not paired with them ( Lin et al. 2005 ). The new data of GRV 99027 support the same age of approximately 180 Ma for most lherzolitic shergottites, and fill the small gap of ISr between Allan Hills A77005 and Lewis Cliff 88516 ( Borg et al. 2002 ). All available data are consistent with a single igneous source for the intermediate subgroup of lherzolitic shergottites.  相似文献   

18.
Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5–10% in REE (Eu = 14%), 6–13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg‐normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are ~0.6 × CI with enriched La abundance (~0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass‐dependent isotope fractionation trend. Both groups show a ~slope‐1/2 line on a three‐isotope plot with subtle negative deviation in ?17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.  相似文献   

19.
Abstract— In situ io n microprobe analyses of spinel in refractory calcium‐aluminium‐rich inclusions (CAIs) from type 3 EH chondrites yield 16O‐rich compositions (δ 18O and δ 17O about‐40‰). Spinel and feldspar in a CAI from an EL3 chondrite have significantly heavier isotopic compositions (δ 18O and δ 17O about ?5‰). A regression through the data results in a line with slope 1.0 on a three‐isotope plot, similar to isotopic results from unaltered minerals in CAIs from carbonaceous chondrites. The existence of CAIs with 16O‐rich and 16O‐poor compositions in carbonaceous as well as enstatite chondrites indicates that CAIs formed in at least two temporally or spatially distinct oxygen reservoirs. General similarities in oxygen isotopic compositions of CAIs from enstatite, carbonaceous, and ordinary chondrites indicate a common nebular mechanism or locale for the production of most CAIs.  相似文献   

20.
Abstract— The Sm-Nd systematics of whole-rock and mineral separate samples from nakhlite Governador Valadares define a good 147Sm-143Nd mineral isochron age of 1.37 ± 0.02 Ga. This age is in excellent agreement with the 39Ar-40Ar and Rb-Sr ages obtained previously for this meteorite. However, the Rb-Sr isotopic data for our sample show that the isotopic system is disturbed. The lack of isotopic equilibrium is probably caused by the weathering of the sample as indicated by the presence of secondary alteration phases. The whole-rock and acid-washed mineral data yield a Rb-Sr age of 1.20 ± 0.05 Ga, which probably represents a lower limit to the crystallization age of the rock. The petrographic evidence indicates that this meteorite is a clinopyroxene cumulate that probably crystallized in a subsurface sill (McSween, 1994). Thus, the Sm-Nd isotopic age probably represents the age of such a magmatic event. The initial ε143Nd value determined for the rock at 1.37 Ga is +17 ± 1, indicating that the parent magma of the rock came from a light-rare-earth-element-depleted source of 147Sm/144Nd = ~0.237 based on a simple two-stage evolution model. Results of the same model calculation for the initial 87Sr/86Sr ratio of the rock suggest that its source material was depleted in 87Rb/86Sr by ~50% relative to the estimated martian value at 1.37 Ga. Both the high Sm/Nd and low Rb/Sr values support a clinopyroxene-rich cumulate source for the genesis of the nakhlite Governador Valadares. Furthermore, our Sm-Nd age and ε143Nd data and the previously published ε142Nd datum for the rock (Harper et al., 1995) are consistent with early differentiation of the parent planet, formation of cumulate sources ~4.56 Ga ago, and late melting of the sources and formation of the rock ~1.37 Ga ago. The good agreement of isotopic ages and petrographic features among Governador Valadares, Nakhla, and Lafayette strongly suggests that all three nakhlites have undergone similar evolutionary histories. The nakhlite age data suggest that isotopic heterogeneity in the martian mantle sources existed up to ~1.37 Ga ago and early mantle structures probably have not been disturbed for a significant portion of martian history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号