首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cycladophora davisiana, a radiolarian species dwelling at mesopelagic depths, is known as a representative glacial fauna due to its unique distribution during glacial periods. In the present ocean, abundant production of C. davisiana is only observed in the Okhotsk Sea, indicating an adaptation of C. davisiana for seasonal sea-ice covered conditions. We found pronounced abundant production of C. davisiana during the early to middle Holocene in the Okhotsk Sea, suggesting more favorable conditions for C. davisiana than the present Okhotsk Sea. In order to clarify the reason, oceanographic conditions during the Holocene were reconstructed based on biomarkers, lithogenic grains including ice-rafted debris (IRD), biogenic opal, and total organic carbon (TOC) in two sediment cores from the Okhotsk Sea. These indicators suggest that the pronounced C. davisiana production may be attributed to: 1) a supply to mesopelagic depths under intensified stratification of fine organic particles derived from coccolithophorids, bacteria, and detrital materials; and 2) cold, well-ventilated intermediate water formation.  相似文献   

2.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

3.
The depth distributions of the radiolarian fauna in the Chukchi and Beaufort Seas, marginal seas of the western Arctic Ocean, were examined quantitatively in depth-stratified plankton tows from 4 or 5 intervals above 500 m and in surface sediments from various depths between 163 and 2907 m. The radiolarian assemblage from the water column in September 2000 was dominated by Amphimelissa setosa and followed by the Actinomma boreale/leptoderma group, Pseudodictyophimus gracilipes and Spongotrochus glacialis. These species are related to the Arctic Surface Water shallower than 150 m. This assemblage is similar to that in the Greenland Sea relating to the ice edge, but did not contain typical Pacific radiolarians in spite of the flow of water of Pacific origin in this region. The living depth of Ceratocyrtis historicosa was restricted to the relatively warm water between 300 and 500 m corresponding to the upper Arctic Intermediate Water (AIW) originating from the Atlantic Ocean. Radiolarian assemblages in the surface sediments are similar to those in the plankton tows, except for common Cycladophora davisiana in sediment samples below 500 m. C. davisiana is probably a deep-water species adapted to the lower AIW or the Canadian Basin Deep Water ventilated from the shelves.  相似文献   

4.
南海西北部浮游生物中多孔放射虫的组成与分布   总被引:1,自引:0,他引:1  
对南海西北部海区1959年全年各月所取得的浮游生物小网样品中的放射虫进行了定量研究,分析了其种类组成和分布,结果表明,所鉴定出的212种多孔放射虫主要为热带大洋暖水种,其中泡沫虫目(Spumellaria)145种,占总种数的68%,罩笼虫目(Nassellaria)67种,占总种数的32%;泡沫虫目无论在种类和数量上均较罩笼虫目占优势.研究海域的主要优势种为海绵球虫(Spongosphaera streptacantha)、钟翼盔虫(Pterocorys campanula)、四房面包虫四房亚种(Om-matartus tetrathalamus tetrathalamus)、三臂星虫(Triastrum aurivillii).该海域放射虫的全年密度分布状况变化很大,1,2月放射虫密度较小,分布范围也较小,3月起数量增多,4,5,6月是全年密度较大的月份,出现许多斑块状密集区,7,8月数量有所减少,其他月份密度也相对较小.放射虫数量变化总的趋势为春末夏初较多,秋季较少,冬季最少.放射虫的丰度和种类多样性在调查海域变化复杂,但基本趋势是从西北和北部向东南部由低逐渐升高;由海南岛周边海域和广东沿海向外海由低逐渐升高;此分布格局主要受海流、温度、盐度、深度和营养盐等环境因子的影响.  相似文献   

5.
A detailed analysis of dissolved organic carbon (DOC) distribution in the Western Arctic Ocean was performed during the spring and summer of 2002 and the summer of 2003. DOC concentrations were compared between the three cruises and with previously reported Arctic work. Concentrations of DOC were highest in the surface water where they also showed the highest degree of variability spatially, seasonally, and annually. Over the Canada Basin, DOC concentrations in the main water masses were: (1) surface layer (71±4 μM, ranging from 50 to 90 μM); (2) Bering Sea winter water (66±2 μM, ranging from 58 to 75 μM); (3) halocline layer (63±3 μM, ranging from 59 to 68 μM), (4) Atlantic layer (53±2 μM, ranging from 48 to 57 μM), and (5) deep Arctic layer (47±1 μM, ranging from 45 to 50 μM). In the upper 200 m, DOC concentrations were correlated with salinity, with higher DOC concentrations present in less-saline waters. This correlation indicates the strong influence that fluvial input from the Mackenzie and Yukon Rivers had on the DOC system in the upper layer of the Chukchi Sea and Bering Strait. Over the deep basin, there appeared to be a relationship between DOC in the upper 10 m and the degree of sea-ice melt water present. We found that sea-ice melt water dilutes the DOC signal in the surface waters, which is contrary to studies conducted in the central Arctic Ocean.  相似文献   

6.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

7.
The analysis of 79 hauls performed by commercial bottom trawlers from 50 to 800 m depth in the Balearic Sea (north-western Mediterranean) from June 1995 to September 1996 yielded a total of 30 cephalopod species belonging to 12 families. Cluster analysis of these data gave as a result two main groups 50–200 m and 200–800 m each subdivided into two other groups (50–100 vs. 100–200 m and 200–600 vs. 600–800 m). These results suggested the existence of two assemblages that could be associated to the continental shelf (50–100 m) and the upper slope (600–800 m) separated by a wide transitional zone (100–600 m) representing a region of overlapping shelf and slope faunas (ecotone). The faunistic bathymetric gradient showed a continuous substitution of species with depth rather than discrete assemblages separated by distinct boundaries. The more coastal species such as Eledone moschata, Loligo vulgarisSepia officinalis and Octopus vulgaris were found on the continental shelf; on the transitional zone, apart from species characteristic of this zone (Illex coindetii, Sepietta oweniana, Rossia macrosoma, Scaeurgus unicirrhus and Pteroctopus tetracirrhus), we also observed species from both the continental shelf and slope. The upper slope was characterized by typical species of deeper waters, such asBathypolypus sponsalis , Histioteuthis reversa, H. bonnellii, Ancistroteuthis lichtensteinii andOnychoteuthis banksii . The octopod O. vulgaris was the dominant species on the continental shelf and upper transitional zone, being substituted by T. sagittatus on the lower transitional zone and upper slope. Mean biomass decreased abruptly from the continental shelf to the transitional zone and from there to the upper slope. Mean species richness and species diversity were higher in the transitional zone than in the continental shelf and upper slope. Finally, some biological aspects of the more abundant deep-sea cephalopod species are studied: Bathypolypus sponsalis, Octopus salutii,Pteroctopus tetracirrhus , Histioteuthis reversa and H. bonnellii.  相似文献   

8.
为了解菲律宾海放射虫的区域分布特色,利用同样的样品处理方法,对菲律宾海及其邻近海域的44个表层沉积样中的放射虫进行对比分析,鉴定统计了500个属种,物种多样性较高.菲律宾海表层沉积物中放射虫的群落结构和丰度变化幅度较大,反映了菲律宾海更为复杂的区域生态环境或沉积环境;南海北部放射虫丰度非常高且罩笼虫目占据较大优势,表明...  相似文献   

9.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

10.
IWr~IOXThe Nansha Islands area of the mouth China Sea is located at the margin of the West Pacificwarm POOl. Its variations in physical and chemical properties, namely, the stability of the WestPacific warm afl, involve the global climatic changes, for instance, EI Nino events caused theglobal climatic anomaly in the recent years and evolution of East Asian mourn. Therefore thearea is of imPOrtance for the global climatic changes. Recently recovered deep-sea sediment coresfrom the are…  相似文献   

11.
In January–February 2001, we measured microbial biomass as ATP and community respiration as ETS activity of organisms < 200 μm in the aphotic zone of the Ross Sea. Microbial respiration amounted to 2.14 mmol C m− 2 day− 1 in the depth range 200–1000 m. Our daily estimates of carbon export are close to the daily percentage of net community production (NCP), removed as sinking biogenic particles from the upper 100 m in the entire Ross Sea, but lower than those of other oceanic systems. Comparing remineralization determined in this study with that obtained by sediment traps in the Ross Sea, it appeared that about 63% of organic carbon remineralized by respiration derived from POC pool. Such evidence highlighted POC source as the main organic fuel of the biological pump in the Ross Sea.  相似文献   

12.
A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr−1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m−2 d−1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m−2 d−1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.  相似文献   

13.
Water characteristics of the Yellow Sea Warm Current and its movement in summer are examined from the analysis of the recent hydrographic data collected in adjacent seas of Cheju Island. It is suggested that the Yellow Sea Warm Current water in the northeastern China Sea is a mixture of Western North Pacific Central Water and the Yellow Sea Bottom Cold Water in the ratio of 7 to 3. It is characterized by salinities of 34.2 < S < 34.5% and temperatures of 13 < T < 15°C at depths below 50 m. The Yellow Sea Warm Current does not seem to extend into the Yellow Sea as previously believed, at least in summer, but instead it turns eastward around Cheju.  相似文献   

14.
15.
Benthic Denitrification in the Gulf of Bothnia   总被引:1,自引:0,他引:1  
Denitrification was measured over an 8-month period in the Bothnian Bay and the Bothnian Sea, the two northernmost basins of the Baltic Sea. The recorded rates varied between 0 and 0·94 mmol N m−2day−1. In the Bothnian Sea, a seasonal pattern could be discerned with high rates in spring, no rate in summer and a moderate rate in winter. In the Bothnian Bay, no such seasonality was observed. It is suggested that denitrification in the Gulf of Bothnia is regulated by sediment nitrification. Calculation of annual mean rates of denitrification gave that the amount of nitrogen consumed by denitrification corresponded to 1·45×104tons N year−1for the Bothnian Bay and 3·45×104tons N year−1for the Bothnian Sea. A comparison with total N input (river runoff, point sources and atmospheric deposition) to the two basins showed that the proportion of N removed through denitrification amounted to 23% for the Bothnian Bay and 31% for the Bothnian Sea.  相似文献   

16.
A large amount of nutrient and chlorophyll data from the North Sea were compiled and organised in a research data base to produce annual cycles on a relatively fine spatial resolution of 1° in each horizontal direction. The data originate from many different sources and were partly provided by the ECOMOD data base of the Institut fur Meereskunde in Hamburg and partly by ICES in Copenhagen to cover the time range from 1950 to 1994. While the annual cycles of nutrients and chlorophyll derived for the continental coastal zone are representative for the decade 1984–1993 only, those for the remaining parts of the North Sea may be considered climatological annual cycles based on data from more than four decades. The composite data set of climatological annual cycles of medians and their climatological ranges is well suited to serve for validational and forcing purposes for ecosystem models of the North Sea, which have a resolution larger than or equal to 1° in both longitude and latitude. The annual cycles of the macronutrients and chlorophyll presented here for 1° × 1° squares in the North Sea show especially that sufficient observational data exist to provide initial, forcing and validational data for the simulations with the 130-box setup (ND130) of the ecosystem model ERSEM. The annual cycles presented give a clear picture for the whole of the North Sea. The highest concentrations occur at the continental coasts as a result of continued river input, which is added to the ongoing atmospheric input over the North Sea. Also, from the Atlantic Ocean water with relatively high nutrient concentrations enters the North Sea via the northern boundary. In the productive areas on and around the Dogger Bank nutrient concentrations are lower than in the other parts of the North Sea, even in winter. The areas with seasonal stratification have very different annual cycles in the upper (0–30 m) and lower layers (30 m-bottom). The shallow boxes are fully mixed and exhibit a relatively fast increase of nutrient concentrations caused by summer regeneration of nutrients.  相似文献   

17.
Net community production (NCP) and nutrient deficits (Def(X)) were calculated using decreases in dissolved CO2 and nutrient concentrations due to biological removal in the upper 200 m of the water column during four cruises in the Ross Sea, Antarctica along 76°30′S in 1996 and 1997. A comparison to excess dissolved and particulate organic carbon showed close agreement between surplus total organic carbon (TOC) and NCP during bloom initiation and productivity maximum; however, when TOC values had returned to low wintertime values NCP was still significantly above zero. This seasonal NCP, 3.9±1 mol C m−2, must be equivalent to the particle export to depths greater than 200 m over the whole productive season. We estimate that the annual export was 55±22% of the seasonal maximum in NCP. The fraction of the seasonal maximum NCP that is exported through 200 m is significantly higher than that measured by moored sediment traps at a depth of 206 m. The removal of carbon, nitrate and phosphate (based on nutrient disappearance since early spring) and their ratios showed significant differences between regions dominated by diatoms and regions dominated by the haptophyte Phaeocystis antarctica. While the ΔC/ΔN removal ratio was similar (7.8±0.2 for diatoms and 7.2±0.1 for P. antarctica), the ΔN/ΔP and ΔC/ΔP removal ratios for diatoms (10.1±0.3 and 80.5±2.3) were significantly smaller than those of P. antarctica (18.6±0.4 and 134.0±4.7). The similarity in ΔC/ΔN removal ratios of the two assemblages suggests that preferential uptake of phosphate by diatoms caused the dramatic differences in ΔC/ΔP and ΔN/ΔP removal ratios. In contrast to low ΔC/ΔP and ΔN/ΔP removal ratio in diatom-dominated areas early in the growing season, deficit N/P and C/P ratios in late autumn indicate that the elemental stochiometry of exported organic matter did not deviate significantly from traditional Redfield ratios. Changes in biologically utilized nutrient and carbon ratios over the course of the growing season indicated either a substantial remineralization of phosphate or a decrease in phosphate removal relative to carbon and total inorganic nitrogen over the bloom period. The species dependence in C/P ratios, and the relative constancy in the C/N ratios, makes N a better proxy of biological utilization of CO2.  相似文献   

18.
The Japanese archipelago is surrounded by the Pacific to the east, the Okhotsk Sea to the north, the Sea of Japan to the west and the Okinawa Trough to the south. The last three seas form semi-isolated deep basins, all with potentially tectonic origin but a different primary energy source as well as hydrographic and faunistic history. The Okhotsk Sea is connected to the Pacific through the deep straits between the Kurile Islands. As a result much of the fauna has links with that fauna found at similar depths in the Pacific. By contrast, the Sea of Japan was isolated from the main Pacific during the last ice age and became anoxic. Even today the link is only through narrow shallow straits. As a result the fauna is impoverished and is believed to be composed of cold-adapted eurybathic species rather than true deep-sea species. The deep-water fauna of both these seas derive their energy from sinking surface primary production. The Okinawa Trough has a much younger tectonic history than the Okhotsk Sea or the Sea of Japan. In the Okinawa Trough the most noticeable fauna is associated with hydrothermal activity and chemosynthesis forms the base of the food chain for the bathyal community. The variable nature of these three basins offers excellent opportunities for comparative studies of species diversity, biomass and production in relation to their ambient environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The first vertical profiles of chlorofluoromethanes (Freons F11 and F12) measured during the austral summer 1987 (INDIGO-3 cruise) in the region of Enderby Land (30°E) and the Princess Elizabeth Trough (90°E) arc presented in relation to hydrological and geochemical characteristics. In the open ocean, transient tracer penetration reaches 1000 m. Off the West Ice Shelf and Enderby Land, a significant decrease in Freons is found below the cold Winter Water and just above the deep oxygen minimum and temperature maximum of the upper Circumpolar Deep Water (200–400 m). In the region off MacRobertson Land, where the oxygen minimum is deeper (1000 m), the Freon gradients are less abrupt. In deep open ocean waters, no Freons were detected in the core of the Circumpolar Deep Water. However, near the continental shelf, we have encountered Freon minima associated with salinity maxima, indicating significant mixing between deep and (recent) ventilated waters. Over the whole water column, a strong zonal contrast emerges in tracer distributions between stations situated to the east and to the west of MacRobertson Land (65°E), which may be associated with the Weddell Gyre extension. Freon maxima associated with oxygen maxima and temperature and salinity minima that characterize Antarctic Bottom Water (AABW) have been found over all the region studied; the tracers indicate three main bottom waters that are related to Weddell Sea, Ross Sea and local origins. At two stations located on the edge of the continental shelf, Freon measurements suggest that the AABW formation was recent, and the tracers' continuity reveals a preferential westward flow of bottom waters. Although it is clear that bottom water formation takes place around 60–70°E, the information is too sparse to specify the source regions.  相似文献   

20.
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×103 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号