首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
许多研究者认为,烃源岩干酪根C同位素组成主要受干酪根类型的影响,可以作为评价烃源岩类型、沉积环境和进行油气源对比的重要指标,并得到广泛应用。对额济纳旗及邻区典型剖面石炭系—二叠系烃源岩有机碳(TOC)的丰度、地球化学特征、热演化特征和干酪根C同位素分布的研究表明,研究区石炭系—二叠系烃源岩为浅海陆棚相沉积环境形成的泥质岩,TOC含量中等,以Ⅱ类干酪根为主,烃源岩演化进入成熟-过成熟阶段,干酪根C同位素具有显著偏重的特点。并且干酪根C同位素组成明显与热演化程度和有机碳丰度有关,随着烃源岩演化程度的不断提高,重碳同位素不断富集,在成熟—过成熟阶段,对C同位素的影响可达4‰~6‰。随着TOC含量的增加,干酪根C同位素显著偏轻,影响值可达4‰以上。由于研究区烃源岩已进入成熟—过成熟阶段,干酪根C同位素的分布在演化过程中已经发生较大变化,干酪根类型的影响相对降低或已不显著,不能再作为评价烃源岩干酪根类型的指标。  相似文献   

2.
许多研究者认为,烃源岩干酪根C同位素组成主要受干酪根类型的影响,可以作为评价烃源岩类型、沉积环境和进行油气源对比的重要指标,并得到广泛应用.对额济纳旗及邻区典型剖面石炭系-二叠系烃源岩有机碳(TOC)的丰度、地球化学特征、热演化特征和干酪根C同位素分布的研究表明.研究区石炭系-二叠系烃源岩为浅海陆棚相沉积环境形成的泥质岩,TOC含量中等,以Ⅱ类干酪根为主,烃源岩演化进入成熟-过成熟阶段,干酪根C同位素县有显著偏重的特点.并且干酪根C同位素组成明显与热演化程度和有机碳丰度有关,随着烃源岩演化程度的不断提高,重碳同位素不断富集,在成熟-过成熟阶段,对C同位素的影响可达4‰~6‰随着TOC含量的增加,干酪根C同位素显著偏轻,影响值可达4‰以上.由于研究区烃源岩已进入成熟-过成熟阶段,干酪根C同位素的分布在演化过程中已经发生较大变化,干酪根类型的影响相对降低或已不显著,不能再作为评价烃源岩干酪根类型的指标.  相似文献   

3.
Fourteen ureilites were analyzed for stable C isotopic composition using stepped combustion. The δ13C values over the temperature range 500 to 1000°C are fairly constant for any particular meteorite although there are differences between samples. The similarity in combustion temperatures of pure diamond (600–1000δC) and pure graphite (600–800°C) makes it difficult to ascertain the relative proportions of either component within each sample. However, the constant δ13C values observed over the range 500 to 1000°C strongly suggests that ureilite diamond and graphite have the same isotopic composition. This would seem to confirm that the diamond in ureilites formed from the graphite during a process, presumably an impact event, which did not fractionate C isotopes.There is a variation in C isotopic composition of graphite/diamond intergrowths among ureilites, which is not continuous—the samples fall into two groups, with δ13C values clustered around ?10%. and ?2%. PDB. These groups are also distinguishable on the basis of the Fe content of their olivines, which may reflect the existence of more than one ureilite parent body. The brecciated ureilite North Haig has a δ13C value of ?6.5%. and it is thus possible that this sample contains components from mixed parent materials.Nitrogen abundance and stable isotope measurements were made on five samples using stepped combustion analysis. Nitrogen concentrations range from 25 to 150 ppm and CN ratios are substantially less than for carbonaceous chondrites. Variation in N isotopic composition is wide and there is evidence of different ratios in diamond/graphite, silicate and metal.  相似文献   

4.
Asphaltenes extracted from crude oils are proposed to possess structural features of the related source rock kerogen. For the present study micro-scale sealed vessel pyrolysis (MSSV) and combustion isotope ratio mass spectrometry (GC–C–IRMS) were used to compare gas generation from a whole rock (type II-S kerogen) from southern Italy with that from related sulfur rich asphaltenes isolated from a low maturity heavy crude oil. The purpose of was to determine whether experimental pyrolysis of oil asphaltenes can be used to predict the timing and the chemical and isotopic composition of hydrocarbon gases generated from genetically related kerogen in the source rock during burial maturation. The results show that parameters such as (gas to oil ratio) GOR and oil and gas formation timing are very similar for these two sample types, whereas gas composition, product aromaticity and sulfur content are remarkably different. Slight differences in GOR are mainly due to differences in gas formation characteristics at very high levels of thermal alteration. Secondary gas formation from the whole rock covers a much broader temperature range under geological conditions than that from the asphaltene products. However, it is remarkable that both the onset and the maximum temperature are nearly identical under geological conditions. The observed differences in gas generation characteristics are supported by discrepancies in the carbon isotopic characteristics of the gas range compounds and indicate different precursors and/or mechanisms for gas generated from whole rock and asphaltenes.  相似文献   

5.
A maturity indexing procedure based on the isotopic difference between the total accumulated methane produced by exhaustive pyrolysis and the kerogen (Δ13C) and the mole ratio of methane to kerogen carbon (CMR), has been tested by applying a standardized technique, i.e. exhaustive pyrolysis (600°C for 120 hr) of extracted-powdered samples and measurement of the amounts and isotopic composition of the methane and kerogen carbon, on a suite of 15 Bakken shale samples.A linear relation was found between the carbon mole ratio of pyrolysis-derived methane and total organic carbon and the δ13C difference between the pyrolysis-derived methane and total organic carbon (r = −0.79); and between the amount of CH4 generated from exhaustive pyrolysis and H/C atomic ratios (r = +0.91).  相似文献   

6.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   

7.
The present paper reports recent improvements in sealed tube combustion technique used for the determination of N isotopic composition in various rocks characterized by low N contents (i.e. few ppm). Nitrogen is extracted from samples by combustion in quartz tubes sealed under vacuum. The nitrogen gas purified using Cu, CuO and CaO, is quantified as dinitrogen N2 by capacitance manometry in ultra-high vacuum line. Nitrogen isotopic analysis is performed on a triple-collector static vacuum mass spectrometer, allowing measurement of nanomole quantity of N2. Nitrogen amount and isotopic composition of the analytical blanks are low and describe Gaussian distribution with mean values of 0.65 ± 0.30 nmol N and − 3.7‰ ± 2.7‰, respectively (2σ). Systematic analyses of international and internal standards demonstrate that this technique provides accurate and precise results. The precision on N content and isotopic composition are better than ± 8% and ± 0.5‰ respectively, even for samples containing less than 2 ppm N. The sealed tube combustion technique is shown to apply successfully to rocks of various lithologies such as metagabbros, metaperidotites and altered basalts. It is thus suitable for studying oceanic crust in a perspective to better constrain N exchanges between Earth mantle and surface reservoirs. The investigation can also be extended to analysis of small size samples, particularly when little sample exists and when high spatial resolution is required.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(13-14):2089-2104
The carbonaceous chondrites display the widest range of oxygen isotopic composition of any meteorite group, as a consequence of the interaction of primordial isotopic reservoirs in the solar nebula. These isotopic variations can be used to identify the reservoirs and to determine conditions and loci of their interactions. We present a comprehensive set of whole-rock analyses of CV, CO, CK, CM, CR, CH, and CI chondrites, as well as selected components of some of these meteorites. A simple model is developed which describes the isotopic behavior during parent-body aqueous alteration processes. The process of thermal dehydration also produces a recognizable effect in the oxygen isotopic composition.  相似文献   

9.
The carbonaceous chondrites contain significant amounts of carbon- and nitrogen-bearing components, the most abundant of which is organic matter. Stepped combustion data of whole rock and HF/HCl residues of carbonaceous chondrites reveal that the organic material can be subdivided operationally into three components: (1) free organic matter (FOM), which is readily extractable from whole-rock meteorites and is enriched in 13C and 15N; (2) labile organic matter (LOM), which has a macromolecular structure but is liberated by hydrous pyrolysis; LOM is the parent structure for some FOM and is also enriched in 13C and 15N; and (3) refractory organic matter (ROM), which is also macromolecular but is virtually unaffected by hydrous pyrolysis and is relatively depleted in 13C and 15N. The macromolecular entities (LOM and ROM) are by far the most abundant organic components present, and as such, the relative abundances of the 13C- and 15N-enriched LOM and the 13C- and 15N-depleted ROM will have a major influence on the overall isotopic composition of the whole-rock meteorite. Laboratory experiments designed to simulate the effects of parent body aqueous alteration indicate that this form of processing removes LOM from the macromolecular material, allowing ROM to exert a stronger influence on the overall isotopic compositions. Hence, aqueous alteration of macromolecular materials on the meteorite parent body may have a significant control on the stable isotopic compositions of whole-rock carbonaceous chondrites. The enstatite chondrites are also carbon rich but have been subjected to high levels of thermal metamorphism on their parent body. Stepped combustion data of HF/HCl residues of enstatite chondrites indicate, that if they and carbonaceous chondrites inherited a common organic progenitor, metamorphism under reducing conditions appears to incorporate and preserve some of the 13C enrichments in LOM during graphitisation. However, when metamorphism is at its most extreme, the 15N enrichments in LOM are lost.  相似文献   

10.
干酪根的类型及其分类参数的有效性、局限性和相关性   总被引:23,自引:3,他引:23  
众所周知,不同类型干酪根的成烃潜力有很大差别,且产物性质也有所不同。因此,在油气资源的评价中,正确判别干酪根的类型有着十分重要的意义。1982年,我们曾在“干酪根类型划分的X图解”一文中,在法国石油研究院分类的基础上,利用岩石热分析(ROCK-EVAL)资料把干酪根划分为三类五型,即标准腐泥型(Ⅰ1),含腐殖的腐泥型(Ⅰ2),中间型或混合型(Ⅱ),含腐泥的腐殖型(Ⅲ1)和标准腐殖型(Ⅲ2)。与此相应,我国陆相沉积盆地的油源区,按主力油源层的干酪根类型,基本上可以分为五大类  相似文献   

11.
The isotopic composition of carbon from the organic matter of late Jurassic oil shales from the Volgian-Pechora shale province is studied. The existence of a dependence between Corg content in the rock and the isotopic composition of kerogen carbon is ascertained. The content of the heavy carbon isotope increases with increasing Corg. This dependence is accounted for by the progressive accumulation of isotopically heavy hydrocarbons of the initial organic matter due to sulfurization. The data on the isotopic composition of individual n-alkanes of bitumen in the rocks and the data on the absence of isotopic fractionation between thermobitumen and the residual kerogen from oil shales from the Volgian-Pechora shale province obtained by treating shale in an autoclave in the presence of water are presented first in this paper.  相似文献   

12.
Deep-seated cracked gas exploration was achieved great breakthrough in Es4L of the Minfeng area on the northern slope of the Dongying Sag. Carbon isotopic and molecular compositions studies revealed the characteristics of wet gas and a normal trend of carbon isotopic composition. Empirical cutoff points of δ13C2 and δ13C3 and light hydrocarbon compositions distinguished the cracking gas as sapropelic gas. Variations in i/nC5, i/nC4 and δ13C2 fur-ther confirmed that the gas was cracked from residual kerogen. Source characteristics indicated that the gas was de-rived from mature-highly mature source rocks of Es4 with kerogen type II being dominant mixed with some oil-cracking gas. Burial history modeling indicated that there were two hydrocarbon charging periods in Es4L reser-voirs. The first period refers to the Guantao-Minghuazhen stage dominated by oil charging, while the second period refers to the Minghuazhen stage and has been dominated by cracked gas charging till now.  相似文献   

13.
对流上地幔Os同位素组成的准确估算是运用Re-Os同位素体系探讨地幔演化的基础。前人研究主要是以地幔橄榄岩为研究对象,由于地幔橄榄岩Os同位素存在明显的不均一性,因而直接影响估算值的准确性。对流上地幔中包含的不同亏损程度的难熔组分在部分熔融过程中难以熔融,对形成的熔体相的Os同位素组成贡献很少或者没有。因此,与对流上地幔具有相同的Os同位素组成初始值的早期分离结晶岩石(如堆晶岩),结合堆晶岩中锆石的准确定年,可以用来估算对流上地幔Os同位素组成。本文根据这一方法测试了那曲地区弧后盆地堆晶岩的Os同位素组成和锆石U-Pb年龄,推测那曲地区新特提斯洋对流上地幔Os同位素组成为碳质球粒陨石型的。根据这一模型,对比了罗布莎和东巧铬铁矿岩、含矿围岩以及不含矿围岩的Os同位素特征,揭示出矿石及围岩均具有古老大陆岩石圈地幔信息,而不含矿围岩(泽当岩体)的Os同位素组成为碳质球粒陨石型的,无古老大陆岩石圈地幔信息。  相似文献   

14.
Stepwise pyrolysis-gas chromatography is used to examine and characterize the carbonaceous matter in sedimentary rocks. Low-temperature steps remove material normally volatile or extracted by benzene-methanol. Successively-higher temperature steps degrade the insoluble carbonaceous matter (kerogen) into smaller molecular pieces. The sequential pyrolysis steps have the advantage of breaking the kerogen at several temperatures which may be related to bond type or strength. The pyrolysis product chromatograms from each step can be compared. The molecular sizes (chain length) of kerogens fragments can be determined. The results presented here show the molecules in the range C11 to C23 because: (1) they can be compared to normal petroleum source rock extractables; and (2) these large molecules give a feeling for the molecular construction of the kerogen.Green River and Antrim shales show low-temperature material which is indigenous and not modified compared to the pyrolyzed kerogen fragments in the range C11C23. Kupferletten shows low-temperature material of a narrow molecular weight range of C15C19 which is probably derived from the kerogen. Monterey shale low-temperature material appears to be unrelated to the kerogen as represented by its pyrolysis products. The Pierre shale kerogen shows molecules over the range C11C23. Kerogen from the Romney shale has no molecules large than C8 in its pyrolysis products and no petroleum potential due to thermal and tectonic diagenesis.  相似文献   

15.
为研究低熟气形成过程中大分子结构的变化情况,对吐哈盆地侏罗系八道湾组的煤与碳质泥岩干酪根在不同升温速率下进行了热解实验,借助于红外光谱分析,研究了不同热模拟温度下干酪根结构的特征与变化。结果表明,随热演化的进行,煤与碳质泥岩干酪根的芳香结构不断缩合,含氧官能团不断脱落,碳质泥岩干酪根中的脂肪族类有所降低。吐哈盆地低熟气主要来源于煤与碳质泥岩干酪根中的含氧官能团--羧基与甲氧基,以及碳质泥岩干酪根上的脂肪族。从干酪根结构上揭示了低熟气主要来源于Ⅲ型有机质的原因。  相似文献   

16.
干酪根中不同结构和官能团具有不同的碳同位素组成,这种差异可以用有机质碳同位素热力学同位素因子(β因子)进行预测。煤岩模拟实验产物中,δ13CCO2相对烃类气体而言明显偏重,这与干酪根中羧基的β13C较大有关。含水实验产物的δ13CCO2轻于无水实验产物的δ13CCO2是由于含水实验中所增加CO2的碳同位素组成相对较轻造成的,含水实验增加的CO2产率是由β13C相对较小的部分亚甲基碳通过断裂、氢转移、以及与水反应转变而来。模拟实验低温阶段(≤300℃),甲氧基中的甲基断裂可能的甲烷形成的主要方式。而甲氧基的β13C大于甲基,所以低温阶段出现了甲烷碳同位素组成先较重后变轻的现象。  相似文献   

17.
Deuterium-enriched amino acids occur in the Murchison carbonaceous chondrite. Synthesis from D-enriched interstellar precursors by Strecker reactions during aqueous alteration of the parent body has been proposed. To test this hypothesis, we have measured the retention of deuterium in amino acids produced from HCN, NH3, and formaldehyde-D2, acetaldehyde-D4, and acetone-D6 in H2O. The isotopic label is 50% to 98% retained, with variations in retentivity depending on the amino acid and the reaction conditions. If amino acids, once formed on the parent body by the Strecker synthesis, lose no deuterium by subsequent exchange with water or H-bearing minerals, then the observed deuterium isotopic composition of Murchison amino acids represents as much as 50% or more of the enrichments inherited from their interstellar precursors. Imino diacids are prominent side products of the Strecker synthesis which have not been reported in carbonaceous chondrites. Under the conditions of the Strecker reaction using deuterium labeled aldehydes and ketones, unlabeled amino acids are also formed by an HCN polymerization route indicating multiple pathways for the synthesis of amino acids in meteorites.  相似文献   

18.
通过对生排烃模拟实验产物 (残留油和排出油 )中正构烷烃单体碳同位素组成的测定,揭示出生排烃过程中正构烷烃碳同位素组成的变化特征。研究表明,生烃初期,液态正构烷烃主要来自干酪根的初次裂解,它们的碳同位素组成不论是在排出油中还是在残留油中,随温度的变化都不明显,呈现较相似的分布特征;在生烃高峰期,早期形成的沥青质和非烃等组分的二次裂解以及高碳数正构烷烃可能存在的裂解,使得正构烷烃单体碳同位素组成明显富集13 C,尤其在高碳数部分呈现出较大的差异。另外,实验结果显示排烃作用对液态正烷烃单体碳同位素组成的影响不太显著。  相似文献   

19.
Bulk meteorite samples of various chemical classes and petrologic types (mainly carbonaceous chondrites) were systematically investigated by the stepped combustion method with the simultaneous isotopic analysis of carbon, nitrogen, and noble gases. A correlation was revealed between planetary noble gases associating with the Q phase and isotopically light nitrogen (δ15N up to –150‰). The analysis of this correlation showed that the isotopically light nitrogen (ILN) is carried by Q. In most meteorites, isotopically heavy nitrogen (IHN) of organic compounds (macromolecular material) is dominant. The ILN of presolar grains (diamond and SiC) and Q can be detected after separation from dominant IHN. Such a separation of nitrogen from Q and macromolecular material occurs under natural conditions and during laboratory stepped combustion owing to Q shielding from direct contact with oxygen, which results in Q oxidation at temperatures higher than the temperatures of the release of most IHN. There are arguments that ILN released at high temperature cannot be related to nanodiamond and SiC. The separation effect allowed us to constrain the contents of noble gases in Q, assuming that this phase is carbon-dominated. The directly measured 36Ar/C and 132Xe/C ratios in ILN-rich temperature fractions are up to 0.1 and 1 × 10–4 cm3/g, respectively. These are only lower constraints on the contents. The analysis of the obtained data on the three-isotope diagram δ15N–36Ar/14N showed that Q noble gases were lost to a large extent from most meteorites during the metamorphism of their parent bodies. Hence, the initial contents of noble gases in Q could be more than an order of magnitude higher than those directly measured. Compared with other carbon phases, Q was predominantly transformed to diamond in ureilites affected by shock metamorphism. The analysis of their Ar–N systematics showed that, similar to carbonaceous chondrites, noble gases were lost from Q probably before its transformation to diamond.  相似文献   

20.
We have measured the hydrogen isotopic composition (D/H ratios) of the water from 13 carbonaceous chondritic microclasts (CCMs, size <1 mm) trapped in two howardites (Kapoeta and Yamato-793497) early in the evolution of Solar System. The division into tochilinite-rich; magnetite-rich, olivine-poor; magnetite-rich, olivine-rich CCM types is corroborated by the hydrogen isotopic compositions. Both mineralogy and hydrogen isotopic compositions demonstrate that tochilinite-rich CCMs represent CM2 chondritic matter. In contrast, there is no good match between the isotopic and mineralogical properties of the magnetite-rich CCMs and the known groups of carbonaceous chondrites, suggesting that magnetite-rich CCMs represent a new kind of chondritic matter, not yet sampled in meteorite collections. This demonstrates that the view of the asteroid belt revealed by the collection of meteorites is incomplete. The study of (micro)clasts offers a unique opportunity to better decipher the nature and relative abundance of asteroids.The average hydrogen isotopic composition of water belonging to CCMs, D/H = (152.0 ± 4.8) × 10−6 (1σm), is similar to that of Antarctic micrometeorites (AMMs), D/H = (161.2 ± 3.8) × 10−6 (1σm). The similarity, in terms of mineralogy and hydrogen isotopic composition, between CCMs and AMMs demonstrates that the composition of the micrometeorites has not been modified over the whole history of the Solar System. It indicates that the composition of the micrometeorite flux onto Earth has been, and is, dominated by a mixture of CM2-like; magnetite-rich, olivine-poor; magnetite-rich, olivine-rich carbonaceous chondritic matter exemplified by CCMs found in howardites. Because CCMs have not suffered atmospheric entry, they provide an abundant source of pristine micrometeorites.The average D/H ratio of the whole population of CCMs is identical within errors to that of the Earth (149 ± 3 × 10−6). The match between the CCMs D/H ratio and that of the Earth is especially remarkable because 1) three different populations of CCMs are needed to make the D/H ratio of the Earth; 2) there is no single carbonaceous chondrite group for which a similar match exists. This observation suggests that CCMs population might be representative of the late veneer agent(s) that delivered water to the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号