共查询到17条相似文献,搜索用时 62 毫秒
1.
通过对龙华新区2个监测站点2012年的PM2.5监测数据进行分析,得出新区PM2.5年均质量浓度值为0.043 mg/m3,全年总超标天数为30 d,超标率为8.2%.PM2.5污染具有明显的季节性特征,干季污染严重,雨季则较轻.新区常年盛行偏北风,处于东莞、惠州等污染严重区域的下风向,且风速偏小,是新区PM2.5来源及质量浓度升高的重要原因之一.同时,利用大气环境影响评价系统的AERMOD模型对新区PM2.5污染质量浓度分布进行模拟,结果显示新区PM2.5主要来自本地污染源,贡献率为51.2%,外地污染源贡献率为48.8%.其中,PM2.5污染主要受机动车尾气和道路扬尘影响,贡献率为32.0%,其次是施工项目和裸露土地影响,贡献率为18.2%,工业污染源影响非常小. 相似文献
2.
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg.m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg.m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg.m-3.d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg.m-3.d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。 相似文献
3.
通过统计2012—2013年东莞市观测到的629次降雨过程和对应的PM2.5质量浓度降雨前后的变化,分析每次降雨过程的雨量级、时间、强度与PM2.5质量浓度净化大小的关系。结果表明:虽然降雨有助于PM2.5沉降,缓解空气污染,但由于每次降雨过程的雨量、降雨时长、强度不同,降雨前的PM2.5质量浓度不同,雨滴、雾滴的影响,局部性降雨的影响,雨滴大小、数密度以及其它气象要素的影响,导致每次降水过程不是都能削减PM2.5质量浓度,起净化作用,净化的程度也不一样;从平均净化能力来说,雨量级越大、降雨时长越长,雨强越强的降雨过程对PM2.5质量浓度削减的能力越强,净化效果越显著。 相似文献
4.
利用GRIMM180气溶胶粒谱分析仪采集乌鲁木齐市PM10、PM2.5和PM1.0数据,研究表明:乌鲁木齐市气溶胶颗粒物质量浓度在进入采暖季后急剧增加,冬季颗粒物中细粒子含量最高,PM2.5/PM10可达77.6%,PM2.5/PM10,PM1.0/PM10,PM1.0/PM2.5三比值体现了颗粒物的分布特征,四季污染程度越高,细粒子含量越高。四季无降水日PM10、PM2.5、PM1.0的质量浓度和分布的日变化基本呈三峰三谷型,出现早—午—晚峰值,上午—下午—午夜后谷值,各季节峰谷值具体出现时间略有差别,由于冬季逆温层顶盖等因素的影响,冬季质量浓度和分布的日变化在此基础上多了两次波动。降水的发生对冬、春季质量浓度的影响大于夏、秋季,对不同粒径段粒子的分布影响有一定差别。 相似文献
5.
天津城区秋季PM2.5质量浓度垂直分布特征研究 总被引:6,自引:2,他引:6
为研究天津大气颗粒物的污染水平和时空分布特征,利用天津大气边界层观测铁塔(255m),分别在40m、120m、220m处设立监测点,通过监测到的PM2.5的质量浓度,结合PM10、能见度等资料来分析污染物的时空分布规律和分布特征.结果表明,天津城区PM2.5污染水平相当严重,日均质量浓度远高于美国1997年制定的65μg*m-3的排放标准.混合层厚度和稳定度的变化对PM2.5浓度变化有一定的影响,随混合层厚度的变化,不同高度PM2.5质量浓度值有所不同.23时至11时,120m浓度明显高于其它各层,11-18时,由于大气扩散能力的增强,三层污染物质量浓度开始下降,而到了18-23时,低层污染物浓度较高,各层浓度总体趋势为120m>40m>220m.PM2.5质量浓度的日变化与稳定度的变化较一致.气象条件和早晚出行高峰期的影响导致PM2.5的质量浓度出现峰值.PM10与PM2.5的总体变化趋势基本一致,说明污染物来源基本相同.能见度水平和细粒子污染水平呈现较好的负相关,细粒子质量浓度的高低是决定能见度好坏的主要因子.降水过程是颗粒物从大气中清除的重要机制. 相似文献
6.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。 相似文献
7.
8.
利用2015年1月至2017年12月中国环境监测总站全国城市空气质量实时发布平台中公布的克拉玛依5个监测点数据和同时期克拉玛依国家基本气象站的观测数据,分别研究了克拉玛依市4个行政区的PM2.5浓度的时空变化特征以及气象条件对克拉玛依PM2.5浓度变化的影响。结果表明:从月份上看,克拉玛依每年的1月、2月、12月PM2.5浓度最高,3月、11月PM2.5浓度较高,其中,独山子每年2月的PM2.5浓度均最高,2016年2月独山子PM2.5平均浓度最高,达到134 μg·m-3,超过国家一级标准值的2.8倍,属于中度污染,从季节上看,克拉玛依四季PM2.5浓度变化呈现波峰波谷变化趋势,表现为冬季最高,春季次之,夏季、秋季各区变化不一的特点,采暖期的PM2.5浓度高于非采暖期的PM2.5浓度;克拉玛依PM2.5浓度在空间上的总体分布为:独山子区>白碱滩区>克拉玛依区>乌尔禾区;从风向、风速、气温、气压和相对湿度等气象要素与PM2.5浓度的相关性来看,气压、相对湿度与PM2.5浓度呈显著正相关,气温、风速、风向与PM2.5浓度呈负相关,其中气温、风向与PM2.5浓度呈显著负相关。 相似文献
9.
福州市PM2.5、PM2.5/PM10分布特征及与气象条件关系的初步分析 总被引:1,自引:0,他引:1
利用福州市PM2.5、PM10和气象资料,分析PM2.5、PM2.5/PM10的分布特征及与气象条件的关系。结果表明:福州市细粒子污染程度较轻,春季PM2.5和PM2.5/PM10值均是四季中最高的,其次是冬季,夏季最低;影响PM2.5浓度出现高值的天气系统有:暖区辐合与高空槽前、大陆高压后部和暖区降水三种系统,其中暖区降水天气形势下的PM2.5平均浓度最高,超标率为25.5%;影响PM2.5浓度出现低值的天气系统有:冷高压脊、高压底部和高空槽后,副热带高压及边缘,台风(热带辐合带)及外围系统,在后两种天气系统影响下的PM2.5平均浓度最低,超标率为0;剔除因降水、雾等低能见度个例,PM2.5浓度与能见度的相关系数为-0.626,冬春季的相关系数是夏秋季的1.4倍;PM2.5浓度与单一气象要素(如温度、相对湿度、风速等)相关性不明显,但不同季节、不同气象要素变化的组合对PM2.5浓度有直接影响。 相似文献
10.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。 相似文献
11.
选用2003—2004年初PM2.5连续观测资料,统计分析了北京地区PM2.5的特征、PM2.5与PM10以及PM2.5与地面气象要素的相互关系。结果表明:四季中夏季PM2.5浓度最低,冬、春两季浓度较高。PM2.5与PM10比值平均为0.55,非采暖期两者比值为0.52,采暖期两者比值为0.62;夏季该比值主要分布在0.3~0.6之间,春、秋两季该比值分布在0.3~0.8之间,冬季采暖期该比值分布在0.4~0.9之间。PM2.5与PM10比值日变化与气象条件日变化、人们日常生活习惯密切相关,沙尘天气和交通运输高峰期扬起地面粗颗粒物会导致PM2.5在PM10中的比例下降,而冬季取暖以及夏季光化学反应则会引起PM2.5的比例升高。PM2.5的浓度与地面气象要素中本站气压、相对湿度和风速有很好的的相关性,与气温的相关性较差。SO42-,NO3-和NH4+为北京地区PM2.5中主要离子。PMF源解析方法确定了北京地区5类细粒子污染源,分别是:土壤尘、煤燃烧、交通运输、海洋气溶胶以及钢铁工业。 相似文献
12.
北京雾、霾天细粒子质量浓度垂直梯度变化的观测 总被引:6,自引:3,他引:6
近年来北京城市区域雾霾天气显著增加,不仅严重影响工农业生产和交通运输,还严重影响人体健康.2007年夏秋季节,北京325 m气象塔8、80和240m平台梯度观测结果表明,雾、霾、晴三种典型天气状况大气细粒子质量浓度垂直分布各有特点,雾天(11月5~6日)低层浓度明显偏高,6日从低到高3层PM2.5(空气动力学直径小于等于2.5μ的大气气溶胶)浓度日均值分别为352.6±79.3、224.7±69.0、214.8±32.8 μg·m~(-3);霾天(8月19~20日)细粒子上下混合均匀,19日从低到高3层PM2.5浓度分别为89.8±29.3、88.9±29.8、90.0±31.7 μg·m~(-3);晴天(8月22~23日)细粒子昼夜变化明显,夜间在80 m高度出现明显分层,23日80 m以下平均值为32.6±13.1μg·m~(-3),240 m平均值为27.4±13.5μg·m~(-3).雾天细粒子主要来源于局地,霾天细粒子污染表现为时空分布十分均匀的城市群区域污染特征且污染物积累;连续晴天细粒子明显被清除. 相似文献
13.
利用北京市空气质量监测数据和气象资料,对2013年2月28日和3月9日两次沙尘污染过程PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)、PM10(空气动力学当量直径小于等于10μm的颗粒物,即可吸入颗粒物)浓度及PM2.5浓度/PM10浓度比值的变化特征进行了分析,研究结果表明:(1)沙尘开始影响北京时,PM2.5与PM10浓度表现出反位相变化,PM10浓度在两次沙尘过程中2 h内分别上升50.8%与202.4%,最高达800μg m-3以上;PM2.5浓度分别下降58.3%与50.9%,直至下降至35μg m-3以下,PM2.5有明显改善现象。(2)虽然PM2.5浓度在沙尘到达前有缓升的迹象,但沙尘抵达后,PM2.5浓度持续快速下降,PM2.5浓度/PM10浓度比值由沙尘影响前的0.75以上降至0.25以下。沙尘影响前,PM2.5日均值均超过150μg m-3,北京地区处于重度污染水平。这说明沙尘来临前以人为污染为主,主要由细粒子"贡献",沙尘来临后的空气污染,主要由巨、大粒子的沙尘"贡献"。 相似文献
14.
15.
采用卫星监测的火点燃烧排放数据,利用区域化学传输模式WRF-Chem模拟分析了2017年5月华北地区细颗粒物(PM2.5)质量浓度分布,通过生物质燃烧排放源(华北区域以秸秆燃烧为主)开关的敏感性试验定量计算了燃烧排放对北京及其周边地区PM2.5质量浓度的影响。卫星监测结果显示,2017年5月华北地区有大量的秸秆焚烧现象,对该地区空气质量造成一定影响的燃烧天数为20 d,占全月总日数的65%左右。数值模拟结果表明:该地区秸秆燃烧排放导致PM2.5浓度升高的区域集中在华北平原农作物产区,其分布位置与卫星监测的火点分布吻合。秸秆燃烧导致这些地区PM2.5浓度月平均值上升幅度普遍超过3 μg/m~3,高值区超过了11 μg/m~3,上升比例可达10%以上;此外,来自华北平原及长三角地区的燃烧排放对北京(特别是东南部地区)污染物浓度的影响是不容忽视的,其中河南、山东、天津等地的秸秆燃烧在合适风场的作用下会严重影响北京,可导致丰台及通州等地PM2.5小时浓度上升超过17 μg/m~3,上升幅度超过40%。 相似文献
16.
本文利用MODIS和MISR卫星反演的地面PM2.5浓度和来自大气化学和气候模式比较计划(ACCMIP)的4个耦合了大气化学模块的气候模式(GFDL-AM3、NCAR-CAM3.5、GISS-E2-R和MIROC-CHEM)模拟的PM2.5浓度数据,评估分析了4个全球模式对中国地区地面PM2.5浓度时空变化特征的模拟能力。结果表明:4个模式集合模拟的PM2.5浓度在中国东部模拟效果较好。对比单个模式,GFDL-AM3模式对中国PM2.5浓度的空间分布型模拟效果最好。模式结果之间的一致性差异显著的地区主要出现在新疆中部和内蒙古西部地区。从整个中国地区的区域平均的时间序列来看,4个模式集合平均结果与观测结果相差不大,基本能够反映出东北、华中、华东沿海、新疆西部地区的PM2.5浓度的变化趋势。 相似文献
17.
采用江苏省淮安市地面5个监测站2013年1月1日2015年12月31日PM10、PM2.5、SO2、NO2、CO、O3逐日质量浓度资料及同期气象资料,统计分析了该地区大气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD (Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM10、PM2.5占比分别达到25.2%、48.9%,PM10中PM2.5比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度 1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。 相似文献