首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal Quaternary deposits of western Oranie show typical soft-sediment deformations including sedimentary dykes, sand volcanoes, sismoslumps, thixotropic bowls, thixotropic wedges, diapir-like structures, and faults grading. Field observations indicate that these deformations exist at several levels of the studied deposits along the west Oranian coast. This study demonstrated that these structures are earthquakes-related, by analysis of potential trigger sources. Several arguments demonstrate the seismic origin: the depositional environment rich in water that located in an active tectonic region, the thixotropic nature of deformations and their large vertical and horizontal diffusion in the Quaternary series consistent with a seismic recurrence. This allows characterizing these Quaternary soft-sediment deformations as seismites that were triggered by earthquakes.  相似文献   

2.
Today, scientists are deeply concerned by the vulnerability of groundwater reservoirs to pollution. Relatively simple overlay and index methods can be used to produce groundwater vulnerability maps in geographic information system. In addition, this study deals with contamination from nonpoint sources. In this study, two such models, DRASTIC and GOD, were applied in the Jijel Plain area of northeast Algeria and compared with measured groundwater nitrate concentrations. This showed that results from DRASTIC were better than GOD, 69% correlation with nitrate compared to 56%. DRASTIC was better able to identify vulnerable zones along the river valleys. The DRASTIC model was then modified using the nitrate concentrations to optimize the rating score given within each parameter range and sensitivity analysis to change the weighting given for each parameter. These combined changes gave a final Pearson's correlation of 83% with nitrate. This showed that recharge, aquifer type, and topography were the key factors in controlling vulnerability to nitrate pollution.  相似文献   

3.
The aim of this study was to transform the rain into flow in the basin of Wadi Djendjen by using a simulation model in absence of the continuous measurements of the flow. The obtained results indicated and confirmed the strong adaptability of this model with varied hydroclimatic situations. The validation process showed an interesting result, which lead to conclude that the model is well calibrated and has a good performance to be used for the basins with Mediterranean climate. The obtained results for the simulation by the GR2M model over the studied period (1973–1986) showed that there no significant difference between the obtained value for the yearly average flow (197.70 hm3) and that measured at Missa hydrometric station (200.80 hm3), which allow us to estimate quantitatively the flow in Missa hydrometric station. While, for the period of 2000–2012, the results showed that the yearly average flow value (171.90 hm3), is significantly different (reduction of 15% for 12 years), in comparison with that measured at Missa hydrometric station (200.80 hm3). This can be due to the dryness which struck the region since 2000, and the local degradation of the forest ecosystem, which has considerably affected the runoff surface.  相似文献   

4.
In this work, we reappraise the seismogenic potential of the geologic structures in the western Tell Atlas of Algeria, considered active host to moderate to low magnitude earthquakes. The direct identification of active faults is generally a difficult task in northern Algeria. The active tectonics in the Oran Plio-Quaternary age basin (Northwestern Algeria) is analyzed and characterized through a morpho-structural study combining topographic, geomorphologic, geological, and neotectonic data. Folds and fault scarps affecting Quaternary deposits show that the region is affected by compressional deformation still active nowadays, as shown by the recorded seismic activity. Our new observations enable a better understanding of the present seismotectonic context of the Oran region, particularly with regard to the magnitude and source of the 1790 Oran damaging event. The obtained result helps to shed some light on the elusive active tectonics characterizing this coastal area, and to assess regional seismic hazard, particularly in coastal zones where large seismogenic areas straddle the onshore–offshore zones.  相似文献   

5.
A shallow moderate (M s=5.7) but damaging earthquake shook theregion of Beni-Ourtilane located about 50 km NW of Setif and 390 kmNE of Algiers (Central Eastern Algeria). The main shock caused the deathof 2 peoples, injured 50 and caused sustainable damage to about 3000housing units. The main shock was preceded by 2 foreshocks and followedby many aftershocks which lasted for many days. Analysis of historicalseismicity including the localisation of epicenters, the trend of isoseismalmaps of some historical events, the localisation of the November 10, 2000main shock (M s=5.7) and the November 16, 2000 aftershock(M s=4.5) as well as the shape of the area of maximum intensity ofthe November 10, 2000 earthquake suggest that the Tachaouaft fault of20 km of length is the activated geological structure. Although, there isno clear surface breaks associated with this earthquake, the localisation ofgeological disorders, such as ground fissures, during the Beni-Ourtilaneearthquake, which are remarkably located near the fault, may have atectonic meaning. Geomorphological analysis through Digital ElevationModels (DEMs) allowed us to identify a clear fault scarp related likely tostrong earthquakes occurred in the past. Among geomorphologicalevidences of this active fault there are the uplift and tilt of alluvial terraceson the hanging wall and the diversion of the drainage pattern. Based onthe quality of constructions and field observations an intensity I 0 = VII (MSK scale) is attributed to the epicentral area,which is striking NE-SW in agreement with the focal mechanism solutionand the seismotectonic observations. In the other hand the amount ofdamage is due rather to the bad quality of constructions than to theseverity of ground motion. The Tachaouaft fault with the Kherrata fault isthe main source of seismic hazard in the Babors region.  相似文献   

6.
The aquifer of Nador has suffered significant salinization due to seawater intrusion. It was strongly exploited during the 1980s and 1990s. A piezometric analysis in April 2012 showed the piezometric level to lie at 0 m a.s.l. over the plain; as a result, this aquifer is highly sensitive to the marine intrusion with an electrical conductivity of the groundwater in of exceeds 2500 μS/cm and so there are no abstractions for irrigation or drinking purpose from these sectors. The geoelectric study also showed the lateral variation in the electrical resistivity for two moments separated in time by more than 45 years. The fall in resistivity may be due to the encroachment of seawater into previously freshwater zones and/or infiltration during the era of pumped abstractions downstream. The resistivity surveys reveal two distinct sectors: the saturated aquifer in brackish and saltwater having resistivity values to 36-10 Ωm, which extends nearly 1600 m inland.  相似文献   

7.
Identification of past tsunamis is important for risk assessment and management of coastal areas. Obtaining accurate and precise ages of sediments originating from such extreme marine coastal floods is crucial for a reliable estimation of the recurrence interval of these often devastating events. We present here the results of quartz optical dating and 14C dating of two sites (Boca do Rio and Martinhal) on the Algarve coast (southern Portugal). These sites contain deposits of the great tsunami of November 1, 1755. The sections were described using sedimentological techniques; at both sites tsunami-laid sands and gravels were identified, intercalated between estuarine muds. Quartz luminescence ages from these sedimentary successions were derived using standard SAR-OSL dating using multi-grain sub-samples. A multiple sampling strategy was employed with several samples taken from the AD 1755 tsunami deposit and from the sediments bracketing the tsunami layer. Our SAR-OSL protocol was shown to be appropriate using dose recovery measurements (measured/given dose ratio of 1.004 ± 0.007, n = 165). The several OSL ages from the 1755 tsunamigenic deposits are internally reproducible but yield age overestimates of between 20 and 125% (60–310 years respectively); this is in agreement with values reported in the literature for similar deposits. The age overestimation of the tsunami-laid sands is presumably due to the rapid erosion and deposition of older sediments, with insufficient light exposure for complete bleaching during the tsunami event itself. The absence of significant bleaching during the tsunami is also suggested by the shape of the dose distributions based on sub-samples made up of only about 100 grains. Analysis of the distributions with the minimum-age model seems to yield the expected age for two of the three distributions. It is important to note that age offsets of a few tens of years to a few hundred years rapidly become insignificant when dating older (>1 to few ka) tsunami layers.  相似文献   

8.
Seismicity in the Eastern Tellian Atlas of Algeria is active of moderate to low magnitude. The direct identification of active fault is often a difficult task. In fact, in this region, despite the intense seismicity, only the Constantine earthquake of 27 October, 1985 ( M s = 5.7) and the Kherrata earthquake of 17 February, 1949 ( M s = 4.7), have generated surface ruptures. Hence, the integration of both geological, historical and instrumental seismic data are important in order to characterise the most important seismogenic structures. This paper presents a preliminary overview of the identified neotectonic faults that we consider active in the Eastern Tellian Atlas of Algeria. Thus, seismicity and neotectonic maps are presented and the faults which are active or potentially active from a neotectonic point of view are shown in relation with the main seismic groupings. This study based mainly on available seismic and bibliographic data and several unpublished marine seismic data enable us to suspect a fault as the eventual source of the Jijeli earthquake of 21 August 1856 that destroyed the Jijeli town and its surroundings. The results inferred from this work represent a starting point for more detailed studies in seismogenic areas.  相似文献   

9.
10.
Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this Capital city, a realistic modelling of the seismic ground motion (SGM) is conducted by using the hybrid method that combines the finite differences method and the modal summation. For this purpose, a complete database of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone [2.25°E–3.50°E, 36.50°N–37.00°N] is performed and an earthquake list, for the period 1359–2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross sections have been built up to model the SGM in the city, caused by the 1989 Mont-Chenoua and the 1924 Douéra earthquakes. Synthetic seismograms and response spectral ratio is produced for Algiers, and they show that the soft sediments in Algiers centre are responsible of the noticed amplification of the SGM.  相似文献   

11.
Evidence of ancient liquefaction-in duced features is presented in the area of the 2003 Zemmouri earthquake (M w 6.8). This earthquake was related to an offshore unknown 50-km long fault. A 0.55-m coseismic coastal uplift was generated and extensive liquefaction has been induced in the most susceptible area which correspond to the seaside and along the hydrographic network, mainly the Sebaou and Isser valley rivers. Field investigations allowed us to identify past liquefaction traces in the Quaternary deposits. The observed features are represented by sand dikes, sills, and sand vents as well as well-preserved sand boiled volcanoes. In this work, we also describe the alluvial environment, the hosted localized stratigraphic layer, the morphology and the geometry of the observed features, as well as the observed deformation (settlement) of the hosted layers that are among characteristics of the seismically induced features as described in worldwide examples. Our observations represent a step towards paleoseismological studies in the region knowing that the May 21st 2003 Zemmouri earthquake is produced by an offshore fault where a direct study of the seismogenic fault is inaccessible.  相似文献   

12.
The western part of the Bohemian Massif hosts an intersection of two regional fault zones, the SW-NE trending Oh?e/Eger Graben and the NNW-SSE trending Mariánské Lázně Fault, which has been reactivated several times in the geological history and controlled the formation of the Tertiary Cheb Basin. The broader area of the Cheb Basin is also related to permanent seismic activity of ML 3+ earthquake swarms. The Eastern Marginal Fault of the Cheb Basin (northern segment of the Mariánské Lázně Fault) separates the basin sediments and underlying granites in the SW from the Kru?né Hory/Erzgebirge Mts. crystalline unit in the NE. We describe a detailed geophysical survey targeted to locating the Eastern Marginal Fault and determining its geometry in the depth. The survey was conducted at the Kopanina site near the Nový Kostel focal zone, which shows the strongest seismic activity of the whole Western Bohemia earthquake swarm region. Complex geophysical survey included gravimetry, electrical resistivity tomography, audiomagnetotellurics and seismic refraction. We found that the rocks within the Eastern Marginal Fault show low resistivity, low seismic velocity and density, which indicates their deep fracturing, weathering and higher water content. The dip of the fault in shallow depths is about 60° towards SW. At greater depths, the slope turns to subvertical with dip angle of about 80°. Results of geoelectrical methods show blocky fabric of the Cheb Basin and deep weathering of the granite bedrock, which is consistent with geologic models based on borehole surveys.  相似文献   

13.
On August 21st and 22nd 1856, two strong earthquakes occurred off the seaport of Djidjelli, a small city of 1000 inhabitants, located 300 km east of Algiers (capital of Algeria). In relation to these two earthquakes, an important tsunami (at least one) affected the western Mediterranean region and the eastern Algerian coastline between Algiers and La Calle (Algero-Tunisian border). Based on historical information as well as on data recently collected during the Maradja 2 survey conducted in 2005 over the Algerian margin, we show that the tsunami could have been generated by the simultaneous rupture of a set of three en echelon faults evidenced off Djidjelli. From synthetic models, we point out that the area affected along the Algerian coast extended from Bejaia to Annaba. The maximum height of waves reached 1.5 m near the harbor of Djidjelli.  相似文献   

14.
东昆仑断裂带、阿尔金断裂带、祁连山一海原活动断裂带等组成了青藏高原北部大型走滑断裂系。这些断裂之间的空间联系、巨大的走滑量及其地壳缩短特征,都显示了它们在印度板块和欧亚板块汇聚过程中青藏高原的形成扮演了主要角色。这些断裂准确的滑动速率对于研究青藏高原变形和演化过程,确定水平滑动、变形的规模,建立高原的变形和演化模式提供了重要依据。  相似文献   

15.
Dramatic drainage reorganization from initial longitudinal to transversal domains has occurred in the Eastern Cordillera of Colombia. We perform a regional analysis of drainage basin geometry and transformed river profiles based on the integral form of the slope-area scaling, to investigate the dynamic state of drainage networks and to predict the degree of drainage reorganization in this region. We propose a new model of drainage rearrangement for the Eastern Cordillera, based on the analyses of knickpoint distribution, normalized river profiles, landforms characteristic of river capture, erosion rates and palaeodrainage data. We establish that the oldest longitudinal basin captured by the Magdalena River network was the Suárez Basin at ≈409 ka, inferring the timing of abandonment of a river terrace using in situ produced cosmogenic beryllium-10 (10Be) depth profiles and providing a first estimation of incision rate of 0.07 mm/yr. We integrate published geochronologic data and interpret the last capture of the Sabana de Bogotá, providing a minimum age of the basin opening to the Magdalena drainage at ≈38 ka. Our results suggest that the Magdalena basin Increased its drainage area by integrating the closed basins from the western flank of the Eastern Cordillera. Our study also suggests that the Magdalena basin is an aggressor compared to the basins located in the eastern flank of the orogen and provides a framework for examining drainage reorganization within the Eastern Cordillera and in similar orogenic settings. The results improve our understanding of headward integration of closed basins across orogenic plateaux. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
我国东南沿海滨海断裂带是1条活动强烈的地震构造带,位于珠江口盆地北缘的粤东滨海断裂带是其重要组成部分,确定该断裂带的几何展布位置与最新活动特征对科学评价华南沿海地区地震危险性、地震构造和地球动力学具有重要科学意义。通过综合分析近年来南海东北部海域地质地貌、地震反射剖面、深部探测、地震活动等方面的研究成果,总结了粤东滨海断裂带几何结构与分段活动性,研究成果已应用于粤东沿海重大工程选址和地震区划工作中。  相似文献   

17.
Summary Several authors have tried to explain the different aspects of pressure waves in water including the phenomenon of «Singing» by assuming another fluid layer below the water column. In this note an attempt has been made to determine the thickness of such a layer.  相似文献   

18.
Analyses of structural and geomorphological data combined with remote sensing interpretation confirm previous knowledge on the existence of an extensional Quaternary tectonic regime in the Colfiorito area (Umbro-Marchean Central Apennines). This is characterized by a maximum principal axis of finite strain oriented approx. NE–SW, which is the result of a progressive deformation process due to pure and radial extension. Surface geological data, the crustal tectonic setting (reconstructed using a CROP 03 seismic reflection profile), and seismological data relative to the autumn 1997 Colfiorito earthquake sequence constrain the following seismotectonic model. We interpret the seismogenic SW-dipping low-angle normal fault pictured by seismic data as an inverted thrust ramp located in the basement at depth between 5 and 10 km. The surface projection of this seismogenic structure defines a crustal box within which high-angle normal faults are responsible for the deformation of the uppermost crust. The regional patterns of pre-existing basement thrusts therefore control the seismotectonic zoning of the area that cannot be directly related to the high-angle normal fault systems which cut through different crustal boxes; the latter system records, in fact, re-shear along pre-existing normal faults. Moreover, Quaternary slip-rates relative to high-angle normal faults in the Central Apennines are closely related to seismic hazard within each crustal box.  相似文献   

19.
Total dissolved solids (TDS) in lake and catchment water is a result of geological structure, as well as duration of rock and water contact and human activity. In this paper, a potential dissolved solids (PtDS) in three ??czna–W?odawa Lake catchments was determined using extraction and computer software (GIS and AquaChem). Human pressure on water quality was estimated as a difference of the TDS and a catchment hydrogeochemical potential (TPtDS, total potential dissolved solids). TPtDS coefficient included hydrogeological features of the aquifer, soil cover impact on infiltrated water quality, and sediments susceptibility to denudation. The main advantage of the model is a possibility of its employment for every catchment or other areas (e.g. administrative) on both microscale and mesoscale. The highest TPtDS occurred in the catchment, favoured with underground supply, which was located in the vicinity of the Cretaceous mesoregional unit (Che?m Hills). The lowest value was observed in the catchment built with organogenic sediments and coarse material. A seasonal constancy of TPtDS values proved a stability of the lake‐catchment systems under study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
青藏高原北、东边缘第四纪构造应力场演化特征   总被引:19,自引:5,他引:19       下载免费PDF全文
由断层滑动资料确定的第四纪构造应力场和晚第三纪以来的地壳形变分析结果,较好地解释了青藏高原北、东边缘自中新世中晚期以来的地壳动力学演化特征:在中新世中晚期至早更新世末期,青藏高原北、东边缘主要受来自印度板块碰撞青藏块体产生的垂直块体边界方向的挤压,在高原周缘主要形成逆断裂.构造应力场以逆断型为主;早更新世末期以后,印度板块继续向北推挤,高原内部挤压变形增大.与此同时,在高原东侧边缘形成北西-南东方向的引张,构成了高原东部块体向东、南东方向滑移的有利条件,从而导致了高原周边一系列断层由逆冲改变为走滑,构造应力场以走滑型为主.其最大主压应力方向相对早期构造应力场发生了一个顺时针方向的旋转.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号