首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以三疣梭子蟹(Portunus trituberculatus)、凡纳滨对虾(Litopenaeus vannamei)和梭鱼(Liza haematocheli)混养池塘生态系统为研究对象,利用Ecopath with ecosim(EwE)模型软件,构建了由17个生物功能组组成的能量流动模型。研究表明,系统由5个营养级组成,其中第Ⅰ、Ⅱ营养级的能量流通量占系统总能量流通量的比例分别为63.47%和35.39%。系统大部分消费者位于营养级Ⅱ左右,食物链结构多呈"线状"。系统总能量流中碎屑功能组占74.58%,初级生产者占25.42%,其中,碎屑功能组中的人工饵料生物能占系统总能量来源22.31%,在系统总能量流中起重要作用。系统Finn’s循环指数(FCI)为21.24%,连接指数(CI)和系统杂食指数(SOI)分别为0.28和0.06,相对聚合度(A/C)为0.45。从生态营养学效率(EE)值来看,系统对来自碎屑功能组的能量利用率较高,对来自初级生产者微型、微微型浮游植物的能量利用效率较低。大量初级生产者能量未被利用而直接流向碎屑功能组,表明该系统的营养级结构还能进一步优化。建议提高梭鱼的放养密度或引入合适的滤食性生物进行搭配养殖,进一步提高系统的能量利用效率和混合养殖效益。  相似文献   

2.
本文根据2004年长江口及其邻近海域生态调查数据,运用生态通道模型(Ecopath模型)构建生态系统能流网络,分析本区域生态系统营养结构及功能,并与1985—1986年研究数据进行对比,解析两个时期生态系统营养结构与功能的差异。研究结果显示,2004年长江口及其邻近海域生态系统营养级范围为1~4.34,相较于1985—1986年研究结果,底层无脊椎动物食性鱼类和头足类的营养级变动较大。牧食食物链占据主导地位,浮游植物在浮游动物和水母的能量来源中所占比例均在60%以上;碎屑食物链所占能流比为44%。系统总能流为6342.081 t·km–2·a–1。渔获物平均营养级下降,生态营养效率平均值较高,但是碎屑和浮游植物的生态营养效率却明显下降,碎屑趋于累积。生态系统统计量整体显示,长江口及邻近海域生态系统成熟度降低。  相似文献   

3.
根据2021年渔业资源调查数据构建了含有23个功能组的舟山海域生态系统Ecopath模型,分析了当前舟山海域生态系统总体特征并估算了褐菖鲉在舟山海域的生态容量。结果表明:舟山海域生态系统营养级范围为1.000 (浮游植物和有机碎屑)~4.277 ( 鳐类),石首鱼科、虾类和 鳐类为舟山海域生态系统中的关键种。碎屑食物链和牧食食物链是舟山海域生态系统主要的食物链。碎屑和浮游植物对食物网的贡献率分别为61.32%和38.69%。始于浮游植物和碎屑的营养传递效率分别是9.34%和10.50%,系统总营养传递效率是9.82%。总初级生产量/总呼吸量为2.26,系统连接指数为0.372,系统杂食性指数为0.222。生态系统总体特征反映了舟山海域生态系统的成熟状态较低,生态系统处于不稳定阶段,容易受到外界环境变化的影响。根据模型估算,当褐菖鲉生物量增加至8.6倍时,褐菖鲉达到生态容量0.007 95 t/km2,此时生态系统仍保持平衡,且生态系统总体特征基本稳定。因此,褐菖鲉在舟山海域尚有较大增殖潜力。  相似文献   

4.
构建了包括20个功能组的西南黄海生态通道模型(Ecopath Model)。分析结果表明:各功能组营养级的范围在1. 000~4. 509之间,鸟类、鱼类、头足类等主要高营养级生物的营养级范围为3. 417~4. 509。该生态系统的能量流动主要发生在食物网的低营养级部分,在7个系统整合营养级间,能量传递效率沿食物链逐级降低,各营养级生物的消耗量和产出量也急剧减少。从第I营养级到高营养级间的逐级转换效率分别为11. 33%、13. 16%、15. 50%、14. 67%、13. 61%和15. 68%,系统平均转化效率为13. 22%;来源于碎屑的能量转化效率为13. 35%,来自初级生产者的转化效率为13. 14%。在总能流中,直接来自碎屑的占43%,来自初级生产者的占57%,说明系统的能流通道以牧食食物链为主导。混合营养评价显示,系统生产者碎屑与浮游植物对其他多数功能群有积极影响,蟹类、鲽形目、水母、大型底栖和浮游生物中同类竞争的消极影响尤为明显。西南黄海生态系统总初级生产力与总呼吸量比值为2. 541,Finn’s循环指数和Finn’s循环路径长度分别为3. 983、2. 444。通过模型输出的系统生态参数分析,当前西南黄海生态系统仍处于不成熟的、不稳定的阶段。  相似文献   

5.
为评估鲢鱼的滤食作用对淡水鱼混养池塘中浮游生物和悬浮颗粒物组成的影响,2009年在山东省淡水养殖研究所采用围隔将淡水养殖池塘进行分隔,对不同放养比例的草鱼、鲢鱼和鲤鱼混养围隔内的浮游生物和悬浮颗粒物的组成进行研究。结果显示,草-鲢和草-鲢-鲤混养组中隐藻门的隐藻与硅藻门的小环藻、冠盘藻或针杆藻等交替演变,浮游植物的粒级趋于小型化,<5、5~20和>20μm的浮游植物分别占浮游植物生物量的69%、24%和7%;同时浮游动物也趋于小型化,个体较小的原生动物和轮虫生物量占有相对优势,导致浮游动物生物量降低;草-鲤混养组发生了蓝藻水华,色球藻和螺旋藻大量发生,<5、5~20和>20μm的各粒级对浮游植物生物量的贡献率分别在30%左右。实验中悬浮颗粒物(SPM)范围为18.89~116.27mg/L,平均值为52.49mg/L,颗粒有机物(POM)与SPM含量之比的平均值为50.08%,POM与SPM呈显著正相关(R2=0.188,P<0.01)。  相似文献   

6.
本研究根据2006—2007年在北部湾北部(107?51′04″~109o56′07″E;19?44′12″~21?27′46″N)我国领海一侧海域进行的4个季度的生物调查数据,运用Ecopath with Ecosim模型构建起北部湾北部生态系统食物网结构,并对该海域生态系统中的关键种进行了探索性筛选。研究结果表明北部湾北部生态系统的有效营养级范围在1.00~4.03之间,其中营养级最高的是软骨鱼类。以碎屑、浮游植物及细菌为起点,整个生态系统包括三条食物链。各功能组之间的混合营养效应值范围在–1.09到0.54之间,其中61.60%的功能组彼此间存在竞争关系,反映出北部湾北部生态系统中生物类群间存在较为复杂的竞争关系,除碎屑外各功能组自身内部存在捕食和生存空间的竞争压力。北部湾北部浮游动物中的关键物种是肥胖软箭虫(Flaccisagitta enflata),并且其也为整个生态系统中的关键种;鱼类中的关键种为二长棘鲷(Paerargyrops edita),其关键度指数排在整个生态系统的第4位;另外浮游植物在整个生态系统中也具有很高的关键度,其关键度排在整个生态系统中的第三位。本研究对该海域关键种的筛选对北部湾北部海域的营养动力学研究和渔业生产活动具有一定的理论研究和实践意义。  相似文献   

7.
基于2018年海州湾及邻近海域的渔业资源底拖网调查数据,运用Ecopath with Ecosim 6.5 (EwE)软件构建由26个功能群组成的海州湾及邻近海域生态系统Ecopath模型,对现阶段该生态系统的营养结构、营养相互关系和系统总特征等进行分析,旨在为实施基于生态系统的渔业管理提供理论依据。结果表明:海州湾及邻近海域生态系统各功能群的营养级范围为1.00~4.19,其中鱼类营养级范围较广,为3.22~4.19;浮游动物和其他软体动物受初级生产者和捕食者的双重作用,处于重要的营养位置;生态系统总体特征分析显示,该生态系统的总初级生产量与总呼吸量的比值为7.096,总初级生产量与总生物量的比值为56.866,系统的连接指数和系统杂食指数分别为0.429和0.204,说明该生态系统目前处于不成熟、不稳定的状态,容易受外界扰动的影响。本文通过对海州湾及邻近海域生态系统模型进行研究,解析了该海域营养结构和系统发育状况,将为海州湾渔业资源的可持续利用和科学管理提供理论依据。  相似文献   

8.
依据现有研究提供的信息,在孟加拉国孟加拉湾(BoB)新划定的超过90 000 km2的海域基于Ecopath方法利用2016年7月至2017年6月的数据构建了该生态系统的营养通道模型。对食物网中营养级从1(主要生产者和碎屑)到3.45(鲨鱼)的各功能群之间的营养相互作用进行评估,所研究的共19个功能群被认为代表了其中所有的营养级。大多数消费者的生态营养转换效率(EE)超过0.80;表明这是一个被高度利用的生态系统,并且从低营养级到高营养级有较高的能量转换效率。此外,整个生态系统的净效率(0.0018)和能量转换效率(11.12%)标志着当前这一"正在发展中的生态系统"已趋向成熟。生态系统的冗余度(64.6)和聚合度(35.4)也表明了这一生态系统的稳定性。因此,本研究认为这一海域具有显著的后备力量面对压力情况并有能力快速恢复到初始状态。  相似文献   

9.
为构建1985~1986年长江口生态系统的Ecopath模型, 作者根据1985~1986年全年12个航次长江口及邻近海域综合调查数据, 分析此历史时期长江口及邻近海域生态系统的能流结构, 并对生态系统总体特征进行了综合评估。1985~1986年长江口水域生态系统包括16个功能群, 各功能群的营养级在1~4.52, 中上层游泳生物食性鱼类占据最高营养级。各功能群间关系主要由3种途径导致: 控制类型、生态位重叠和营养级联。营养级聚合分析表明, 1985~1986年长江口生态系统能流中牧食食物链占据主导地位, 直接来自初级生产者的占比57%。此历史时期长江口生态系统各营养级平均转化效率为12.4%, 其中来自碎屑的能流转换效率为12.9%, 来自初级生产者的转换效率为12%。生态系统总体特征分析显示, 该历史时期连接指数和系统杂食指数分别为0.471和0.103, 长江口及邻近海域循环指数和平均路径长度分别为9.35%和2.778, 总初级生产量/总呼吸量为1.724。  相似文献   

10.
胃含物分析样本数量对生态系统指标估计的影响   总被引:1,自引:0,他引:1  
本研究应用在胶州湾构建的Ecopath生态系统模型,评估了在模型构建过程中,3种鱼类胃含物分析不同样本数量获得的食性数据对模型输出结果的影响。该模型的生态系统指标被分为3种类别:(1)直接指标,如物种营养级等被胃含物分析样本量直接影响的指标;(2)间接指标,如无脊椎生物生态效率(Ecology efficiency, EE)等受营养关系影响的指标;(3)系统指标,如系统总流量(TST)等用来描述整个生态系统的指标。本研究评估了不同的胃含物分析数量对这些指标的影响。结果表明生态系统模型的系统指标最为稳健,受胃含物分析样本数量的影响最低,而与物种直接相关的指标则在胃含物分析样本量较低时准确度较低。当更多的鱼类胃含物分析数量降低时,生态系统指标的不确定性会增加。本研究有助于理解食性信息的质量如何影响生态系统模型输出,同时可以指导为生态模型构建而进行的胃含物分析实验设计。  相似文献   

11.
黄海是中国近海生态系统的重要组成部分,蕴藏着丰富的海洋生物资源。本研究利用碳氮稳定同位素技术,对该海域大型底栖动物的食物源、营养级和底栖食物网结构进行了研究。结果表明,底栖动物的食物源悬浮颗粒有机物(POM)、沉积物有机物(SOM)、浮游植物和浮游动物的δ~(15)N平均值为:浮游动物浮游植物SOMPOM,δ~(13)C平均值为:SOM浮游动物浮游植物POM。共测定了54种底栖动物的碳氮稳定同位素,其δ~(15)N值范围为5.81‰(美原双眼钩虾)~14.6‰(黄鲫),δ~(13)C值范围为-21.51‰(日本胡桃蛤)~-8.38‰(司氏盖蛇尾)。软体动物双壳类大多数以SOM和浮游植物作为主要食物来源;软体动物腹足类大多数为以小型软体动物和多毛类为食的肉食性动物;节肢动物蟹类是以POM、SOM、浮游动植物、小型软体动物和多毛类等为食的杂食性动物;节肢动物虾类大多数以浮游动物和端足类等小型甲壳类为食;小型鱼类大多数以浮游动物和小型软甲类为食;大中型鱼类则是以小型鱼类、小型软甲类和小型软体动物为食。本研究中的54种底栖动物的营养级范围为1.20~3.57。其中,双壳类等10种处于1~2营养级,腹足类、蟹类、虾类和小型鱼类等36种处于2~3营养级,大中型鱼类等8种处于3以上营养级。基于大型底栖动物的食物源和营养关系,初步构建了黄海底栖食物网。  相似文献   

12.
于2010—2011年在莱州湾朱旺人工鱼礁区(建礁3年)采用地笼网进行周年渔业资源调查,根据调查结果,使用Ecopath with Ecosim 6.4.3软件,构建了莱州湾朱旺人工鱼礁区生态系统食物网模型,提出了人工鱼礁区中日本蟳(Charybdis japonica)、脉红螺(Rapana venosa)和刺参(Apostichopus japonucus)的管理策略。研究表明:功能组主要占据3个营养级;系统总流量为3 390.131t·km~(-2)·a~(-1),总消耗量为1 839.502t·km~(-2)·a~(-1),总呼吸流动量为991.909t·km~(-2)·a~(-1),流向碎屑的总流量为523.729t·km~(-2)·a~(-1);总能流转化效率为12.8%,来自初级生产者和碎屑的能流转化效率分别为13%和12.3%。研究结果显示:莱州湾朱旺人工鱼礁区主要以底栖生物为主,日本蟳和脉红螺为绝对优势种,中上层鱼类的种类和生物量较少,整个生态系统的成熟度和稳定性较低,食物网连接相对简单且趋于线性结构,系统相对不稳定,抵抗外界干扰能力较差。人工鱼礁区的日本蟳和脉红螺生态容量分别为4.038和2.482t·km-2,以每年约1.17和0.96t的捕捞量可持续捕捞10年保持系统平衡;刺参生态容量为50.80t·km-2,以每年22.38~29.85t·km-2的放流量并从第3年以每年8.95~11.94t·km-2规模采捕,4~5年达到其生态容量后停止放流,可继续按原计划采捕5年仍能维持系统稳定。  相似文献   

13.
高世科  孙文  张硕 《海洋学报》2021,43(6):71-80
基于稳定同位素方法,对2018年吕泗渔场近岸海域夏季主要生物种类的潜在碳源及其营养级进行分析,利用IsoSource模型计算该海域消费者的3大碳源(浮游植物、悬浮颗粒有机物、底质有机物)贡献值,并比较叠加潜在碳源影响前后主要生物种类的营养级变化。结果表明,浮游植物和底质有机物对37种主要生物种类的贡献比例分别为58.7%和28.2%,而悬浮颗粒有机物的贡献较小。因此判定吕泗渔场近岸海域夏季主要生物种类的潜在碳源主要是浮游植物和底质有机物。通过分别叠加3大潜在碳源和单一物种作为基准值构建两个营养级谱,右营养级谱的生物种类营养级范围为1.74~3.92,比左营养级谱平均下降0.19个营养级,尽管两个营养级谱的整体趋势走向不变,但部分鱼类和多数虾类的营养位置发生改变。右营养级谱的基准值随着潜在碳源叠加比例的不同而变化,能有效反映生物营养级,更适用于低营养级的虾蟹类。但对于处于中高级消费者位置的鱼类来说,这种叠加的效果影响不大。  相似文献   

14.
南沙渚碧礁生态系营养关系的稳定碳同位素研究   总被引:4,自引:0,他引:4  
利用稳定碳同位素分析技术研究了南沙渚碧礁生态系食物网主要生物类群之间的营养关系。结果表明,生物的稳定碳同位素组成与其营养来源有密切关系。浮游植物的δ^13C为-18.3‰,与其所处海域的环境条件一致,浮游动物的δ^13C值变化较大,范围为-20.4‰~-10.9‰,表明可能存在浮游植物和碎屑两种营养来源。珊瑚和砗磲的碳同位素组成(-17‰~-15‰)与浮游动物相差较大,暗示共生虫黄藻可能在这些珊瑚的营养来源中起重要作用。底栖海参(-9.6‰)和蜘蛛螺(-12.5‰)的碳同位不比组成与它们沉积物食性的营养特征吻合。鱼类的δ^13C值变化范围较大(-17.7‰~-10.9‰),未表现出随营养级升高而增大的趋势,说明影响鱼类碳同位素组成的因素比较复杂。  相似文献   

15.
采用陆基围隔实验法,对草鱼(Ctenopharyngodon idellus)、鲢鱼(Hypophythalmichthys molitrix)和鲤鱼(Cyprinus carpio)不同混养系统的能量收支和转化效率进行了研究。实验共设置7个处理组,分别为草鱼单养(G)、草鱼和鲢鱼二元混养(GS)、草鱼和鲤鱼二元混养(GC)以及草鱼、鲢鱼和鲤鱼按照不同比例放养的三元混养(GSC1、GSC2、GSC3和GSC4)。研究结果表明,实验期间各系统接收的总太阳辐射能为4 970MJ.m-2;光能利用率在0.25%~0.33%之间,各处理组之间差异显著(P<0.05);光合能转化效率以草鱼单养组最低,且与GS、GSC2、GSC3和GSC4处理组之间差异显著(P<0.05);各混养组与草鱼单养组相比,总能量转化效率分别提高了43.51%、11.62%、30.16%、64.30%、38.49%和61.90%,其中,以GSC2为最高,GSC4次之;单位净产量耗饲料能以单养草鱼组最高,显著高于GS、GSC2和GSC4处理组(P<0.05);各处理组沉积能量在3.42~17.73MJ.m-2之间,各处理组间差异显著(P<0.05),各组沉积能量占总投入能量的比例分别为30.92%、12.18%、39.08%、29.43%、28.90%、28.87%和29.80%。本研究结果表明,不同食性鱼类混养系统能够提高光合能转化效率和总能量利用率,降低沉积能量,从而有效提高系统对输入能量的利用效率。  相似文献   

16.
渤海主要渔业资源结构的演变分析   总被引:2,自引:0,他引:2  
通过对现有资料的系统分析,简化了渤海生态系统食物网,并剖析了近50年来渤海主要渔业资源结构的变化特征,这对进一步阐明渤海生态系统动力学的变化特征以及研究渔业资源衰退的原因有重要的科学意义。研究表明,渤海主要鱼类可聚为4类:游泳动物食性鱼类、底栖动物食性鱼类、浮游动物食性鱼类和腐屑食性鱼类,在此基础上渤海生态系统食物网可简化为3条食物链:浮游植物→浮游动物→浮游动物食性鱼类→游泳动物食性鱼类(第一条食物链);浮游植物和碎屑→底栖动物→底栖动物食性鱼类和头足类→游泳动物食性鱼类(第二条食物链);碎屑→腐屑食性鱼类(第三条食物链)。20世纪50年代末以来,第一条食物链渔业资源已取代第二条食物链渔业资源成为最主要的渔业资源,第三条食物链渔业资源生物量百分比呈上升趋势,近年来已成为继第一条食物链渔业资源的第二大类渔业资源。渔业捕捞、渤海次级生产力结构的变化以及各渔业资源生物自身生长和繁殖特点的不同是导致渤海主要渔业资源结构变化的重要因素。  相似文献   

17.
闽南-台湾浅滩海域鱼类资源生产量   总被引:8,自引:0,他引:8  
以海洋生态系统营养动力学为理论依据,根据调查所获得的有关闽南-台湾浅滩海域的初级生产力资料,检测了该海域的浮游植物有机碳含量,测算了生态效率,检测了52种主要经济鱼类营养级及其有机碳含量.采用营养动态模型和Cushing模型估算了该海域生态系统中鱼类资源的生产量(自然生产量),同时采用Cadima模式和MSY简单模式估算鱼类资源最大可持续开发量.估算结果如下鱼类资源生产量为98.63×104t,最大可持续开发量为 48.35×104t.1997年以来实际年渔获量为48.64×104t -53.83×104t,超过了鱼类资源的最大可持续开发量,呈现过度捕捞态势.还讨论了加强该渔场渔业资源管理的7项重要措施,以促进鱼类资源的较快恢复.  相似文献   

18.
为了解中街山列岛的食物网结构特征,本研究于2020年7月在中街山列岛海域采集鱼类、虾蟹类、头足类、贝螺类和浮游动物等消费者样本,利用碳、氮稳定同位素技术,分析大型海藻、浮游植物、悬浮颗粒有机物(POM)和沉积物有机物(SOM)4种潜在碳源对消费者的贡献率以及中街山列岛海域的食物网结构和营养关系。结果表明:(1)碳源的δ13C值范围在-22.93‰~-9.73‰之间,δ15N值范围在1.72‰~7.68‰之间,消费者的δ13C值范围在-21.95‰~-12.55‰之间,δ15N值范围在4.13‰~12.92‰之间,不同碳源及不同消费者类群之间的碳、氮稳定同位素均有显著性差异(p<0.01);(2)应用SIBER模型计算中街山列岛海域的营养结构指标,与其他海域的研究结果对比发现,该海域生态系统的食源多样性更加丰富,营养级长度和生态位总空间较高;(3)应用SIAR模型计算碳源贡献率,结果表明浮游植物和POM是该海域的重要碳源,平均贡献率为29.63%和28.72%;浮游植物对浮游动物的贡献率最大为80.58%,POM对鱼类的贡献率最大为79....  相似文献   

19.
本研究根据2020年11月,2021年1月、4月及8月在崇明岛周边海域的渔业调查数据,使用开源程序Rpath构建了包括22个功能群的物质平衡模型,对该海域生态系统结构和特征进行研究。结果表明:崇明岛周边海域生态系统各功能群营养级范围为1~4.32。小型底栖生物的生态转换效率最低(0.01),说明其到高营养级的能量转换存在瓶颈,是影响该海域底层食物链营养传递效率的关键节点。生态系统总体特征分析表明,该生态系统总规模为2 909.42 t/(km2·a),低于附近海域生态系统规模。浮游植物对生态系统总初级生产力的贡献为60%,是该生态系统的主要营养来源。生态系统总初级生产量/总呼吸量为1.99、系统杂食性指数为0.18,表明生态系统成熟度较低,食物网简单,受干扰后恢复能力较差。模型敏感性分析表明,功能群生物量是影响模型输出准确程度的主要指标。本研究结果可以为该海域生态系统水平的禁捕效果评估工作提供基准参考。  相似文献   

20.
音响驯化技术被广泛应用于海洋牧场及淡水水域对鱼类行为的控制,但在采用何种频率和波形声音方面的研究积累尚少。试验室条件下,利用400 Hz矩形波连续音对鲤、草鱼进行了音响驯化试验。结果表明,鲤、草鱼的反应时间和聚集时间均逐日减少。平均反应时间分别为25.4 s和34.6 s,平均聚集时间分别为48.9 s和56.9 s;聚集率则逐日增加.驯化5 d后,鲤、草鱼的聚集率均达到100%,平均聚集率分别为89.7%和94.1%。由此可见.400 Hz矩形波连续音对鲤、草鱼均有明显的驯化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号