首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper first presents the force–deformation relationship of a post‐tensioned (PT) steel beam‐to‐column connection constructed with bolted web friction devices (FDs). This paper then describes the test program conducted in the National Center for Research on Earthquake Engineering, Taiwan, on four bolted FDs and four full‐scale PT beam‐to‐column moment connection subassemblies using the FDs. Tests confirm that (1) the hysteretic behavior of four bolted FDs is very stable, (2) the friction coefficient between the steel plate and the brass shim is about 0.34, (3) the proposed force–deformation relationships reasonably predict the experimental responses of the PT connections under cyclically increasing deformations up to a beam peak rotation of 0.05 rad, and (4) the decompression moments do not degrade as beam cyclic deformations increase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the results of 56 large‐amplitude shake table tests of a 30% scale eight‐storey controlled rocking steel frame. No significant damage or residual deformations were observed after any of the tests. The frame had four possible configurations on the basis of combinations of two higher mode mitigation mechanisms. The first mitigation mechanism was formed by allowing the upper section of the frame to rock, so as to better control the mid‐height overturning moment. The second mitigation mechanism was formed by replacing the conventional first‐storey brace with a self‐centering energy dissipative (SCED) brace, so as to better control the base shear. The mechanisms had little effect during records where higher mode effects were not apparent, but they substantially reduced the shear and overturning moment envelopes, as well as the peak floor accelerations, during more demanding records. The reduction in storey shears led to similarly reduced brace force demands. Although the peak force demands in the columns were not reduced by as much as the frame overturning moments, using an upper rocking joint allowed the column demands to be estimated without the need to assume a lateral force distribution. The tests demonstrated that multiple force‐limiting mechanisms can be used to provide better control of peak seismic forces without excessive increases in drift demands, thus enabling more reliable capacity design. These results are expected to be widely applicable to structures where the peak seismic forces are significantly influenced by higher mode effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A rate‐dependent modeling technique is developed for moment resisting steel connections that utilize non‐linear viscous dampers. First, a model of the Maxwell‐type is developed that considers the non‐linear viscous damper and connection flexibility for translational motion. This model is compared with experimental results at several input motion frequencies to validate the results. The model is then extended to represent an exterior steel beam‐to‐column connection using damage‐avoidance design and non‐linear viscous dampers. By including terms to represent structural member and connection flexibility, using appropriate geometric transformations the model can be formulated to give the overall lateral load‐drift structural performance. Validation analysis shows good agreement between experimental observations and the model predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The self‐centering prestressed concrete (SCPC) moment resisting frame (MRF) with web friction devices (WFDs) is a new type of structure that integrates advantages of post‐tensioned precast concrete MRFs and self‐centering steel MRFs. In this paper, the configuration of the connection and design guidelines are presented. To further reduce damage to the connection under cyclic loading and facilitate implementation in practice, several significant improvements are proposed and experimentally validated in this study, including the following: (i) the welded connection is replaced by the bolted connection; (ii) aluminum plates are used for friction instead of brass plates to reduce the material costs without decreasing the energy dissipation capacity; and (iii) post‐tensioned tendons at the corners of the beam are replaced by a bundle of tendons at the beam centroid in order to facilitate the field assembly. The resulting improvements of seismic performances are experimentally demonstrated by 10 cyclic tests of two full‐scale SCPC beam–column connections. Numerical simulation of the proposed connection is conducted using the Open System for Earthquake Engineering Simulation (OpenSees) to replicate the experimental results. Seismic behaviors are taken into account, such as the gap opening/closing at the beam–column interface, the self‐centering capacity, and the friction energy dissipation. Good agreement is observed between the numerical simulation and the test results. The proposed SCPC connection with bolted WFDs is demonstrated to have good performance when subjected to cyclic loading. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a design approach for seismic rehabilitation of frames having a beam‐collapse mechanism using a technique termed minimal‐disturbance seismic rehabilitation. This technique pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business. It minimizes obstruction of the visual and physical space of building users and the use of heavy construction equipment and work requiring fire permit (welding/cutting). The developed design approach is simple to use. Yet it leads to designs that limit the beams' plastic rotations to allowable values, while minimizing the number of locations where devices are installed and the devise dimensions. Furthermore, the effectiveness of the design approach and the rehabilitation technique is numerically studied through retrofitting a four‐story steel moment‐resisting frame. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The potential of post‐tensioned self‐centering moment‐resisting frames (SC‐MRFs) and viscous dampers to reduce the economic seismic losses in steel buildings is evaluated. The evaluation is based on a prototype steel building designed using four different seismic‐resistant frames: (i) conventional moment resisting frames (MRFs); (ii) MRFs with viscous dampers; (iii) SC‐MRFs; or (iv) SC‐MRFs with viscous dampers. All frames are designed according to Eurocode 8 and have the same column/beam cross sections and similar periods of vibration. Viscous dampers are designed to reduce the peak story drift under the design basis earthquake (DBE) from 1.8% to 1.2%. Losses are estimated by developing vulnerability functions according to the FEMA P‐58 methodology, which considers uncertainties in earthquake ground motion, structural response, and repair costs. Both the probability of collapse and the probability of demolition because of excessive residual story drifts are taken into account. Incremental dynamic analyses are conducted using models capable to simulate all limit states up to collapse. A parametric study on the effect of the residual story drift threshold beyond which is less expensive to rebuild a structure than to repair is also conducted. It is shown that viscous dampers are more effective than post‐tensioning for seismic intensities equal or lower than the maximum considered earthquake (MCE). Post‐tensioning is effective in reducing repair costs only for seismic intensities higher than the DBE. The paper also highlights the effectiveness of combining post‐tensioning and supplemental viscous damping by showing that the SC‐MRF with viscous dampers achieves significant repair cost reductions compared to the conventional MRF. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

14.
Recent research developed and experimentally validated a self‐centering buckling‐restrained brace (SC‐BRB) that employs a restoring mechanism created using concentric tubes held flush with pretensioned shape memory alloy rods, in conjunction with a buckling‐restrained brace (BRB) that dissipates seismic energy. The present computational study investigated how the SC‐BRB can be implemented in real buildings to improve seismic performance. First, a computational brace model was developed and calibrated against experimental data, including the definition of a new cyclic material model for superelastic NiTi shape memory alloy. A parametric study were then conducted to explore the design space for SC‐BRBs. Finally, a set of prototype buildings was designed and computationally subjected to a suite of ground motions. The effect of the lateral resistance of gravity framing on self‐centering was also examined. From the component study, the SC‐BRB was found to dissipate sufficient energy even with large self‐centering ratios (as large as 4) based on criteria found in the literature for limiting peak drifts. From the prototype building study, a SC‐BRB self‐centering ratio of 0.5 was capable of reliably limiting residual drifts to negligible values, which is consistent with a dynamic form of self‐centering discussed in the literature. Because large self‐centering ratios can create significant overstrength, the most efficient SC‐BRB frame designs had a self‐centering ratio in the range of 0.5–1.5. Ambient building resistance (e.g., gravity framing) was found to reduce peak drifts, but had a negligible effect on residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
李成玉    王义龙  吴东平   《世界地震工程》2022,38(4):120-131
柱脚节点是钢结构体系中的关键部位,其损伤将直接影响到结构体系的性能。基于损伤控制理念,提出了一种装配式L形连接件滑移摩擦柱脚节点。利用有限元软件ABAQUS建立了柱脚节点模型,考虑摩擦界面是否设置填充板和外连接件是否设置加劲肋,以及改变轴压比、连接件竖肢和水平肢厚度等因素,分析不同参数对节点受力模式、滞回曲线、耗能能力和损伤特征的影响。结果表明:柱脚节点主要承受摩擦力和轴压荷载的作用,柱端在受力过程中发生滑移,通过摩擦机制耗能,避免主体结构发生塑性损伤。填充板的设置增强了结构的摩擦性能,且在不同轴压荷载下均具有良好的延性和转动性能。在设置填充板的结构中,合理设置连接件竖肢厚度、水平肢厚度和加劲肋,在保证了节点摩擦耗能性能实现的同时,充分发挥了保护主体结构优势,达到了损伤控制的预期。  相似文献   

16.
In a previous study (Kaplan H, Seireg A., Int. J. Comput. Appl. Technol., 2000; 13 (1/2): 25–41), the authors proposed a base isolation system for earthquake protection of structures.The system incorporates spherical supports for the base, a specially designed spring‐cam system to keep the base rigidly supported under normal conditions and to allow it to move for the duration of the earthquake under the constraint of a spring with optimized stiffness characteristics. A single‐degree‐of‐freedom structure was considered to investigate the feasibility of the concept. The simulation of the system response shows a 20 times reduction of the transmitted force as a result of using the proposed design in the considered case. This paper extends the previous study to the case of a 40‐storey steel structure subjected to the Taft as well as El Centro earthquakes. A 7.5 and 6 times reduction of the maximum transmitted force was achieved for the considered disturbances, respectively, without any adverse effects due to the tilting moment which is inherent in this type of base isolation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R=8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R>8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R>8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Controlled rocking steel braced frames (CRSBFs) have been proposed as a low‐damage seismic force resisting system with reliable self‐centring capabilities. Vertical post‐tensioning tendons are designed to self‐centre the system after rocking, and energy dissipation may be provided to limit the peak displacements. The post‐tensioning and energy dissipation can be designed using simple methods that rely primarily on the first‐mode response. However, the frame member forces are highly influenced by the higher‐mode response, resulting in more complex methods to design the frame members. This paper examines previous proposals and also proposes two new capacity design methods for CRSBFs. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static method that does not require any modifications to the elastic frame model, instead using theory‐based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration. The dynamic procedure is used to design two sets of CRSBFs with three, six, nine, twelve and eighteen stories, one set using a response modification factor of R = 8 and the other using up to R = 20. Based on the results of 800 nonlinear time history analyses, both methods are generally more accurate than the previous capacity design methods and at least as simple to implement. Finally, the displacement results suggest that taller CRSBFs designed using could still limit interstorey drifts to approximately 2.5% at the maximum considered earthquake level in the cases considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Eurocode 8 (EC8) stipulates design methods for frames with diagonal braces and for chevron braced frames, which differ as regards the numerical model adopted, the value of the behavior factor q and the estimation of the lateral strength provided by braces. Instead, in this paper, the use of the same design method is suggested for both types of concentrically braced frames. The design method is a generalization of the one proposed for chevron braced frames in a previous study. A numerical investigation is conducted to assess the reliability of this design method. A set of concentrically braced frames is designed according to the EC8 and proposed design methods. The seismic response of these frames is determined by nonlinear dynamic analysis. Finally, it is demonstrated that the proposed design method is equivalent to those provided by EC8, because it can ensure the same level of structural safety which would be expected when using EC8. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号