首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of seismic engineering are to design and build better and more economic earthquake‐resistant structures. Performance, which is measured as the amount of damage of a facility and the impact of damage to the society after an earthquake, is the main concern. Performance‐based earthquake engineering (PBEE) implies design, evaluation, and construction of engineered facilities whose performance under common and extreme earthquake ground motions responds to the diverse needs and objectives of the owners, users and society. Observations on the performance or damage of structures after strong earthquake ground motions have always served as an effective means to evaluate the current seismic regulations and guidelines and make further improvements afterwards. This paper presents some of the typical damage evidence after the Chichi earthquake occurred recently in Taiwan. Important issues in performance‐based earthquake engineering that need to be considered in future seismic regulations of Taiwan are addressed accordingly. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Performance assessment implies that the structural, non‐structural, and content systems are given and that decision variables, DVs, (e.g. expected annual loss, mean annual frequency of collapse) are computed and compared to specified performance targets. Performance‐based design (PBD) is different by virtue of the fact that the building and its components and systems first have to be created. Good designs are based on concepts that incorporate performance targets up front in the conceptual design process, so that subsequent performance assessment becomes more of a verification process of an efficient design rather than a design improvement process that may require radical changes of the initial design concept. In short, the design approach could consist of (a) specifying performance targets (e.g. tolerable probability of collapse, acceptable dollar losses) and associated seismic hazards, and (b) deriving engineering parameters for system selection, or perhaps better, using the relatively simple design decision support tools discussed in this paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Performance‐based seismic design (PBSD) can be considered as the coupling of expected levels of ground motion with desired levels of structural performance, with the objective of achieving greater control over earthquake‐induced losses. Eurocode 8 (EC8) already envisages two design levels of motion, for no collapse and damage limitation performance targets, anchored to recommended return periods of 475 and 95 years, respectively. For PBSD the earthquake actions need to be presented in ways that are appropriate to the estimation of inelastic displacements, since these provide an effective control on damage at different limit states. The adequacy of current earthquake actions in EC8 are reviewed from this perspective and areas requiring additional development are identified. The implications of these representations of the seismic loads, in terms of mapping and zonation, are discussed. The current practice of defining the loading levels on the basis of the pre‐selected return periods is challenged, and ideas are discussed for calibrating the loading‐performance levels for design on the basis of quantitative earthquake loss estimation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

5.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

6.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

7.
Earthquake early warning systems (EEWS) seem to have potential as tools for real‐time seismic risk management and mitigation. In fact, although the evacuation of buildings requires warning time not available in many urbanized areas threatened by seismic hazard, they may still be used for the real‐time protection of critical facilities using automatic systems in order to reduce the losses subsequent to a catastrophic event. This is possible due to the real‐time seismology, which consists of methods and procedures for the rapid estimation of earthquake features, as magnitude and location, based on measurements made on the first seconds of the P‐waves. An earthquake engineering application of earthquake early warning (EEW) may be intended as a system able to issue the alarm, if some recorded parameter exceeds a given threshold, to activate risk mitigation actions before the quake strikes at a site of interest. Feasibility analysis and design of such EEWS require the assessment of the expected loss reduction due to the security action and set of the alarm threshold. In this paper a procedure to carry out these tasks in the performance‐based earthquake engineering probabilistic framework is proposed. A merely illustrative example refers to a simple structure assumed to be a classroom. Structural damage and non‐structural collapses are considered; the security action is to shelter occupants below the desks. The cost due to a false alarm is assumed to be related to the interruption of didactic activities. Results show how the comparison of the expected losses, for the alarm‐issuance and non‐issuance cases, allows setting the alarm threshold on a quantitative and consistent basis, and how it may be a tool for the design of engineering applications of EEW. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the implications of designing for uniform hazard versus uniform risk for light‐frame wood residential construction subjected to earthquakes in the United States. Using simple structural models of one‐story residences with typical lateral force‐resisting systems (shear walls) found in buildings in western, eastern and central regions of the United States as illustrations, the seismic demands are determined using nonlinear dynamic time‐history analyses, whereas the collapse capacities are determined using incremental dynamic analyses. The probabilities of collapse, conditioned on the occurrence of the maximum considered earthquakes and design earthquakes stipulated in ASCE Standard 7‐05, and the collapse margins of these typical residential structures are compared for typical construction practices in different regions in the United States. The calculated collapse inter‐story drifts are compared with the limits stipulated in FEMA 356/ASCE Standard 41‐06 and observed in the recent experimental testing. The results of this study provide insights into residential building risk assessment and the relation between building seismic performance implied by the current earthquake‐resistant design and construction practices and performance levels in performance‐based engineering of light‐frame wood construction being considered by the SEI/ASCE committee on reliability‐based design of wood structures. Further code developments are necessary to achieve the goal of uniform risk in earthquake‐resistant residential construction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Hybrid simulation (HS) is a novel technique to combine analytical and experimental sub‐assemblies to examine the dynamic responses of a structure during an earthquake shaking. Traditionally, HS uses displacement‐based control where the finite element program calculates trial displacements and applies them to both the analytical and experimental sub‐assemblies. Displacement‐based HS (DHS) has been proven to work well for most structural sub‐assemblies. However, for specimens with high stiffness, traditional DHS does not work because it is difficult to precisely control hydraulic actuators in small displacement. A small control error in displacement will result in large force response fluctuations for stiff specimens. This paper resolves this challenge by proposing a force‐based HS (FHS) algorithm that directly calculates trial forces instead of trial displacements. The proposed FHS is finite element based and applicable to both linear and nonlinear systems. For specimens with drastic changes in stiffness, such as yielding, a switch‐based HS (SHS) algorithm is proposed. A stiffness‐based switching criterion between the DHS and FHS algorithms is presented in this paper. All the developed algorithms are applied to a simple one‐story one‐bay concentrically braced moment frame. The result shows that SHS outperforms DHS and FHS. SHS is then utilized to validate the seismic performance of an innovative earthquake resilient fused structure. The result shows that SHS works in switching between the DHS and FHS modes for a highly nonlinear and highly indeterminate structural system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A probabilistic approach to estimate maximum inelastic displacement demands of single‐degree‐of‐freedom (SDOF) systems is presented. By making use of the probability of exceedance of maximum inelastic displacement demands for given maximum elastic spectral displacement and the mean annual frequency of exceedance of elastic spectral ordinates, a simplified procedure is proposed to estimate mean annual frequencies of exceedance of maximum inelastic displacement demands. Simplifying assumptions are thoroughly examined and discussed. Using readily available elastic seismic hazard curves the procedure can be used to compute maximum inelastic displacement seismic hazard curves and uniform hazard spectra of maximum inelastic displacement demands. The resulting maximum inelastic displacement demand spectra provide a more rational way of establishing seismic demands for new and existing structures when performance‐based approaches are used. The proposed procedure is illustrated for elastoplastic SDOF systems having known‐lateral strength located in a region of high seismicity in California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper examines the potential development of a probabilistic design methodology, considering hysteretic energy demand, within the framework of performance‐based seismic design of buildings. This article does not propose specific energy‐based criteria for design guidelines, but explores how such criteria can be treated from a probabilistic design perspective. Uniform hazard spectra for normalized hysteretic energy are constructed to characterize seismic demand at a specific site. These spectra, in combination with an equivalent systems methodology, are used to estimate hysteretic energy demand on real building structures. A design checking equation for a (hypothetical) probabilistic energy‐based performance criterion is developed by accounting for the randomness of the earthquake phenomenon, the uncertainties associated with the equivalent system analysis technique, and with the site soil factor. The developed design checking equation itself is deterministic, and requires no probabilistic analysis for use. The application of the proposed equation is demonstrated by applying it to a trial design of a three‐storey steel moment frame. The design checking equation represents a first step toward the development of a performance‐based seismic design procedure based on energy criterion, and additional works needed to fully implement this are discussed in brief at the end of the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The last decade of performance‐based earthquake engineering (PBEE) research has seen a rapidly increasing emphasis placed on the explicit quantification of uncertainties. This paper examines uncertainty consideration in input ground‐motion and numerical seismic response analyses as part of PBEE, with particular attention given to the physical consistency and completeness of uncertainty consideration. It is argued that the use of the commonly adopted incremental dynamic analysis leads to a biased representation of the seismic intensity and that when considering the number of ground motions to be used in seismic response analyses, attention should be given to both reducing parameter estimation uncertainty and also limiting ground‐motion selection bias. Research into uncertainties in system‐specific numerical seismic response analysis models to date has been largely restricted to the consideration of ‘low‐level’ constitutive model parameter uncertainties. However, ‘high‐level’ constitutive model and model methodology uncertainties are likely significant and therefore represent a key research area in the coming years. It is also argued that the common omission of high‐level seismic response analysis modelling uncertainties leads to a fallacy that ground‐motion uncertainty is more significant than numerical modelling uncertainty. The author's opinion of the role of uncertainty analysis in PBEE is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
With the increasing emphasis of performance‐based earthquake engineering in the engineering community, several investigations have been presented outlining simplified approaches suitable for performance‐based seismic design (PBSD). Central to most of these PBSD approaches is the use of closed‐form analytical solutions to the probabilistic integral equations representing the rate of exceedance of key performance measures. Situations where such closed‐form solutions are not appropriate primarily relate to the problem of extrapolation outside of the region in which parameters of the closed‐form solution are fit. This study presents a critical review of the closed‐form solution for the annual rate of structural collapse. The closed‐form solution requires the assumptions of lognormality of the collapse fragility and power model form of the ground motion hazard, of which the latter is more significant regarding the error of the closed‐form solution. Via a parametric study, the key variables contributing to the error between the closed‐form solution and solution via numerical integration are illustrated. As these key variables cannot be easily measured, it casts doubt on the use of such closed‐form solutions in future PBSD, especially considering the simple and efficient nature of using direct numerical integration to obtain the solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The recent spate of large earthquakes has triggered diverse performance requirements for structures. This has led to increasing worldwide interest in performance‐based design methods. To establish such methods, however, it is necessary to evaluate structure conditions after defining the loads, and this is difficult to accomplish. On the other hand, there has been steady progress on research and development of structural control techniques for improving structural performance. These technological innovations need to be rationally incorporated into structural design. In particular, semi‐active structural control techniques are effective in improving structural performance during large earthquakes. By effectively incorporating them into the design, it is possible to meet the various structural performance requirements. This paper first outlines the various structural control methods and focuses on the semi‐active structural control technique as the main topic. It then describes an example to verify the effectiveness of the semi‐active structural control technique in high‐rise buildings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk‐based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20‐story reinforced concrete frame structure. Here, the methodology is repeated for intensity‐based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity‐based and risk‐based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity‐based assessment. When used for intensity‐based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk‐based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity‐based seismic assessments using the CS in future building codes and the risk‐based seismic assessments typically used in performance‐based earthquake engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Performance‐based design methodology is based on reaching performance objectives that are associated to certain damage conditions. These performance objectives are related to the seismic hazard and to the performance levels. In actual application, reliable tools are required for capturing the evolution of the damage condition as well as for measuring and locating it. Moreover, it is essential to accurately establish the relationship between the damage and the performance levels. This paper shows the application of damage mechanics to performance‐based design. A layered damage mechanics‐based finite element program is presented with a discussion on modeling for prediction of the response of normal‐strength and high‐strength concrete columns subjected to cyclic flexural loading and various axial load levels. The damage indices derived from these analyses were used to elaborate several damage charts expressed as a function of drift and displacement ductility. This makes it possible to establish a relationship between the damage state and the performance levels. Results have demonstrated the ability of the damage mechanics modeling to accurately predict the behavior of the specimens tested. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper addresses two important issues of concern to practicing engineers and researchers alike in application of performance‐based seismic assessment (PBSA) methodology on buildings: (i) the number of ground motion records required to exercise PBSA—current practice (FEMA P‐58‐1) requires eleven or more pairs of motions for this purpose, and (ii) the time and effort associated with performing the number of nonlinear response history analyses required to exercise PBSA. We present a method for exercising of PBSA that employs classical linear modal analysis to develop a first estimate (i.e., a priori) of probability distribution of loss, followed by utilizing Bayesian statistics to update this estimate using estimates of loss obtained by utilizing a small number of nonlinear response history analyses of a detailed model of the building (i.e., posterior). The proposed technique is used to assess the distribution of monetary loss of two case studies, a 4‐story reinforced concrete moment‐resisting frame building and a 20‐story steel moment‐resisting frame building, both located in Los Angeles, for a ground motion hazard with 10% probability of exceedance in 50 years. The efficiency of the proposed PBSA method is demonstrated by showing the similarity between the distribution of monetary loss at each story of case study buildings obtained from the traditional/sophisticated PBSA methodology and the proposed PBSA method in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号