共查询到20条相似文献,搜索用时 46 毫秒
1.
Seismic performance and damage evaluation of a reinforced concrete frame with hysteretic dampers through shake‐table tests 下载免费PDF全文
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
高强混凝土框架柱的地震损伤模型 总被引:2,自引:1,他引:2
本文首先讨论了现有的几种地震损伤模型及其特点,然后计算出试验框架柱累积滞回耗能随加载循环水平的变化,分析和讨论了轴压比、箍筋形式、配箍率、纵向配筋率、混凝土强度等级以及剪跨比对累积滞回耗能的影响。根据现有的损伤模型,对试验框架柱的损伤指数进行了分析比较,给出了符合高强混凝土框架柱和普通混凝土框架柱的地震损伤模型。根据损伤指数随加载循环水平的变化规律,分析和讨论了剪跨比、轴压比以及配箍率对损伤的影响。最后通过对各地震损伤模型的比较分析,提出了高强混凝土框架柱的地震损伤模型。 相似文献
3.
This paper presents general composed analytical models to predict the behavior of reinforced concrete (RC) bridge columns. The analytical models were developed in OpenSees to represent the common hysteretic behavior of RC bridge columns. The proposed composed models can accommodate flexure failure, flexure‐shear failure, and pure shear failure, which are observed in existing RC bridge piers. The accuracy of the models was verified using data from the static cyclic‐loading experiments of 16 single columns and one multi‐column bent and dynamical experiment from two pseudo‐dynamic tests. The results showed that the analytical models could simulate the nonlinear behavior until the post‐failure behavior, including the strength degradation, the buckling of the reinforcement, and the pinching effect. Therefore, a global view of the behavior of reinforcement concrete is prescribed as simply as possible from the academic perspective, and these models are expected to provide sufficient accuracy when applied in engineering practice. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
H. U?ur Koyliioglu Ahmet ?. Çakmak Søren R.K. Nielsen 《Soil Dynamics and Earthquake Engineering》1997,16(2):95-112
A nonlinear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame is represented by a Clough and Johnston hysteretic oscillator with degrading elastic fraction of the restoring force. The local damage is numerically quantified in the domain [0,1] using the maximum softening damage indicators which are defined in closed form based on the variation of the eigenfrequency of the local oscillators due to the local stiffness and strength deterioration. The proposed method of response and damage analyses is illustrated using a sample 5 storey shear frame with a weak third storey in stiffness and/or strength subject to sinusoidal and simulated earthquake excitations for which the horizontal component of the ground motion is modeled as a stationary Gaussian stochastic process with Kanai-Tajimi spectrum, multiplied by an envelope function. 相似文献
5.
Pre‐ and post‐test analyses of the structural response of a three‐storey asymmetric reinforced concrete frame building were performed, aimed at supporting test preparation and performance as well as studying mathematical modelling. The building was designed for gravity loads only. Full‐scale pseudo‐dynamic tests were performed in the ELSA laboratory in Ispra. In the paper the results of initial parametric studies, of the blind pre‐test predictions, and of the post‐test analysis are summarized. In all studies a simple mathematical model, with one‐component member models with concentrated plasticity was employed. The pre‐test analyses were performed using the CANNY program. After the test results became available, the mathematical model was improved using an approach based on a displacement‐controlled analysis. Basically, the same mathematical model was used as in pre‐test analyses, except that the values of some of the parameters were changed. The OpenSees program was employed. Fair agreement between the test and numerical results was obtained. The results prove that relatively simple mathematical models are able to adequately simulate the detailed seismic response of reinforced concrete frame structures to a known ground motion, provided that the input parameters are properly determined. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
6.
F. Colangelo 《地震工程与结构动力学》2005,34(10):1219-1241
This paper presents pseudo‐dynamic test results on the in‐plane seismic behaviour of infilled frames. Thirteen single‐storey, single‐bay, half‐size‐scale, reinforced concrete‐frame specimens, most of which infilled with non‐structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
8.
Partial‐strength composite steel–concrete moment‐resisting (MR) frame structures represent an open research field in seismic design from both a theoretical and an experimental standpoint. Among experimental techniques, vibration testing is a well‐known and powerful technique for damage detection, localization and quantification, where actual modal parameters of a structure at different states can be determined from test data by using system identification methods. However, the identification of semi‐rigid connections in framed structures is limited, and hence this paper focuses on a series of vibration experiments that were carried out on a realistic MR frame structure, following the application of pseudo‐dynamic and quasi‐static cyclic loadings at the European laboratory for structural assessment of the Joint Research Centre at Ispra, Italy, with the scope of understanding the structural behaviour and identifying changes in the dynamic response. From the forced vibration response, natural frequencies, damping ratios, modal displacements and rotations were extracted using the circle fitting technique. These modal parameters were used for local and global damage identification by updating a 3D finite element model of the intact structure. The identified results were then correlated with observations performed on the structure to understand further the underlying damage mechanisms. Finally, the latin hypercube sampling technique, a variant of the Monte Carlo method, was employed in order to study the sensitivity of the updated parameters of the 3D model to noise on the modal inputs. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
Properly fabricated triangular‐plate added damping and stiffness (TADAS) devices can sustain a large number of yield reversals without strength degradation, thereby dissipating a significant amount of earthquake‐induced energy. A pronounced isotropic‐hardening effect is recognized in the force‐deformation relationships of the TADAS devices made from two grades of low yield strength steel. The proposed plasticity‐fibre model employing two surfaces (a yield surface and a bounding surface) in plasticity theory accurately predicts the experimental responses of the TADAS devices. This model is also implemented into a computer program DRAIN2D+ to investigate a frame response with the TADAS devices. Substructure pseudo‐dynamic tests and analytical studies of a two‐storey steel frame constructed with the low yield strength steel, LYP‐100 or LYP‐235 grade, TADAS devices confirm that the dynamic structural response can only be predicted if the proposed plasticity‐fibre model is used for LYP‐100 steel TADAS device. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
10.
Development and assessment of damage‐to‐loss models for moment‐frame reinforced concrete buildings 下载免费PDF全文
Luís Martins Vítor Silva Mário Marques Helen Crowley Raimundo Delgado 《地震工程与结构动力学》2016,45(5):797-817
The assessment of earthquake loss often requires the definition of a relation between a measure of damage and a quantity of loss, usually achieved through the employment of a damage‐to‐loss model. These models are frequently characterized by a large variability, which inevitably increases the uncertainty in the vulnerability assessment and earthquake loss estimation. This study provides an insight on the development of damage‐to‐loss functions for moment‐frame reinforced concrete buildings through an analytical methodology. Tri‐dimensional finite element models of existing reinforced concrete buildings were subjected to a number of ground motion records compatible with the seismicity in the region of interest, through nonlinear dynamic analysis. These results were used to assess, for a number of damage states, the probability distribution of loss ratio, taking into consideration member damage and different repair techniques, as well as to derive sets of fragility functions. Then, a vulnerability model (in terms of the ratio of cost of repair to cost of replacement, conditional on the level of ground shaking intensity) was derived and compared with the vulnerability functions obtained through the combination of various damage‐to‐loss models with the set of fragility functions developed herein. In order to provide realistic estimates of economic losses due to seismic action, a comprehensive study on repair costs using current Portuguese market values was also carried out. The results of this study highlight important issues in the derivation of vulnerability functions, which are a fundamental component for an adequate seismic risk assessment. © 2015 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd. 相似文献
11.
12.
This paper presents a design‐variable‐based inelastic hysteretic model for beam–column connections. It has been well known that the load‐carrying capacity of connections heavily depends on the types and design variables even in the same connection type. Although many hysteretic connection models have been proposed, most of them are dependent on the specific connection type with presumed failure mechanisms. The proposed model can be responsive to variations both in design choices and in loading conditions. The proposed model consists of two modules: physical‐principle‐based module and neural network (NN)‐based module in which information flow from design space to response space is formulated in one complete model. Moreover, owing to robust learning capability of a new NN‐based module, the model can also learn complex dynamic evolutions in response space under earthquake loading conditions, such as yielding, post‐buckling and tearing, etc. Performance of the proposed model has been demonstrated with synthetic and experimental data of two connection types: extended‐end‐plate and top‐ and seat‐angle with double‐web‐angle connection. Furthermore, the design‐variable‐based model can be customized to any structural component beyond the application to beam–column connections. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
13.
The study investigated the cyclic behavior of unbonded, post‐tensioned, precast concrete‐filled tube segmental bridge columns by loading each specimen twice. Moreover, a stiffness‐degrading flag‐shaped (SDFS) hysteretic model was developed based on self‐centering and stiffness‐degrading behaviors. The proposed model overcomes the deficiency of cyclic behavior prediction using a FS model, which self‐centers with fixed elastic and inelastic stiffnesses. Experimental and analytical results showed that (1) deformation capabilities of the column under the first and second cyclic tests were similar; however, energy dissipation capacities significantly differed from each other, and (2) the SDFS model predicted the cyclic response of the column better than the FS model. Inelastic time‐history analyses were performed to demonstrate the dynamic response variability of a single‐degree‐of‐freedom (SDOF) system using both models. A parametric study, performed on SDOF systems subjected to eight historical earthquakes, showed that increased displacement ductility demand was significant for structures with a low period and low‐to‐medium yield strength ratio and reduced displacement ductility demand in these systems was effectively attained by increasing energy dissipation capacity. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
Performance‐based design methodology is based on reaching performance objectives that are associated to certain damage conditions. These performance objectives are related to the seismic hazard and to the performance levels. In actual application, reliable tools are required for capturing the evolution of the damage condition as well as for measuring and locating it. Moreover, it is essential to accurately establish the relationship between the damage and the performance levels. This paper shows the application of damage mechanics to performance‐based design. A layered damage mechanics‐based finite element program is presented with a discussion on modeling for prediction of the response of normal‐strength and high‐strength concrete columns subjected to cyclic flexural loading and various axial load levels. The damage indices derived from these analyses were used to elaborate several damage charts expressed as a function of drift and displacement ductility. This makes it possible to establish a relationship between the damage state and the performance levels. Results have demonstrated the ability of the damage mechanics modeling to accurately predict the behavior of the specimens tested. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
15.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
16.
Equivalent force control method for substructure pseudo‐dynamic test of a full‐scale masonry structure 下载免费PDF全文
Zaixian Chen Guoshan Xu Bin Wu Yongtao Sun Huanding Wang Fenglai Wang 《地震工程与结构动力学》2014,43(7):969-983
The effectiveness of equivalent force control (EFC) method has been experimentally validated through hybrid tests with simple specimens. In this paper, the EFC method is applied for the MDOF pseudo‐dynamic substructure tests in which a three‐storey frame‐supported reinforced concrete masonry shear wall with full scale is chosen as physical substructure. The effects of equivalent force controller parameters on the response performance are studied. Analytical expressions for the controller parameter ranges are derived to avoid response overshooting or oscillation and are verified by numerical simulation. The controller parameters are determined based on analytical and numerical studies and used in the actual full‐scale pseudo‐dynamic test. The test results show good tracking performance of EFC, which indicates a successful test. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
18.
In this paper, a practical method is developed for performance‐based design of RC structures subjected to seismic excitations. More efficient design is obtained by redistributing material from strong to weak parts of a structure until a state of uniform deformation or damage prevails. By applying the design algorithm on 5, 10 and 15‐storey RC frames, the efficiency of the proposed method is initially demonstrated for specific synthetic and real seismic excitations. The results indicate that, for similar structural weight, designed structures experience up to 30% less global damage compared with code‐based design frames. The method is then developed to consider multiple performance objectives and deal with seismic design of RC structures for a design spectrum. The results show that the proposed method is very efficient at controlling performance parameters and improving structural behaviour of RC frames. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
Substructure hybrid simulation has been actively investigated and applied to evaluate the seismic performance of structural systems in recent years. The method allows simulation of structures by representing critical components with physically tested specimens and the rest of the structure with numerical models. However, the number of physical specimens is limited by available experimental equipment. Hence, the benefit of the hybrid simulation diminishes when only a few components in a large system can be realistically represented. The objective of the paper is to overcome the limitation through a novel model updating method. The model updating is carried out by applying calibrated weighting factors at each time step to the alternative numerical models, which encompasses the possible variation in the experimental specimen properties. The concept is proposed and implemented in the hybrid simulation framework, UI‐SimCor. Numerical verification is carried out using two‐DOF systems. The method is also applied to an experimental testing, which proves the concept of the proposed model updating method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
A. Braconi O. S. Bursi G. Fabbrocino W. Salvatore F. Taucer R. Tremblay 《地震工程与结构动力学》2008,37(14):1635-1655
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献