首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seismic performance of structures is related to the damage inflicted on the structure by the earthquake, which means that formulation of performance‐based design is inherently coupled with damage assessment of the structure. Although the potential for cumulative damage during a long‐duration earthquake is generally recognized, most design codes do not explicitly take into account the damage potential of such events. In this paper, the classical low‐cycle fatigue model commonly used for seismic damage assessment is cast in a framework suitable for incorporating cumulative damage into seismic design. The model, in conjunction with a seismic input energy spectrum, may be used to establish an energy‐based seismic design. In order to ensure satisfactory performance in a structure, the cyclic plastic strain energy capacity of the structure is designed to be larger than or equal to the portion of seismic input energy contributing to cumulative damage. The resulting design spectrum, which depends on the duration of the ground motion, indicates that the lateral strength of the structure must be increased in order to compensate for the increased damage due to an increased number of inelastic cycles that occur in a long‐duration ground motion. Examples of duration‐dependent inelastic design spectra are developed using parameters currently available for the low‐cycle fatigue model. The resulting spectra are also compared with spectra developed using a different cumulative damage model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
结构地震弹塑性反应谱——损伤谱   总被引:1,自引:0,他引:1  
首先,本文基于各国广泛使用的由Park和Ang提出的双参数损伤模型,研究基于损伤性能的弹塑性反应谱(损伤谱)的分析方法。其次,文中考虑结构极限状态设计,并通过自编DBDS程序,研究得到了损伤反应谱(简称“RD谱”),尺。谱综合考虑了结构最大弹塑性位移和结构累积滞回耗能的耦合影响,更加合理地反映结构在罕遇地震作用下的弹塑性行为。第三,通过大量时程分析和拟合得到回归公式及其相关系数,研究成果可供抗震性能评估使用。最后,由本文提倡的RD谱和已有研究的Rμ谱做了定性比较分析,说明了考虑地震动持时的必要性和重要性。  相似文献   

3.
This paper presents an efficient methodology for computing constant‐ductility inelastic response spectra. The computation of constant‐ductility spectra involves numerical root‐finding algorithms to find the strongest structure providing a desired ductility response. Smooth inelastic structural behavior is modeled using a first‐order nonlinear differential equation and the transient structural response is solved using an implicit algorithm requiring Newton iterations at each time step. For structural models with smooth hysteretic behavior (not piece‐wise linear), a simple root‐finding method involving a combination of hyperbolic fits, linear interpolation, and Newton's method converges upon the highest strength (conservative) solution with a small number of iterations. The effect of the hysteretic smoothness on the occurrence of multiple roots is examined for two near‐fault and two far‐fault earthquake records, and for two measures of ductility and for normalized hysteretic energy. The results indicate how the smoothness of the hysteretic behavior affects ductility demand and constant‐ductility response spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
本文旨在分析脉冲型地震动中不同频率的地震动分量对于原始地震动幅值及其非弹性反应谱的影响.首先以近期12次大地震的53条典型脉冲型地震动为数据基础, 基于多尺度分解方法获取脉冲型地震动中的高频分量和低频分量.为与传统方法对比, 本文获取了能够表征地震动脉冲特性的卓越分量及滤除卓越分量的剩余分量.然后对比分析原始地震动和4种地震动分量的幅值特征和非弹性反应谱的特性, 以讨论地震动分量对原始地震动幅值参数及其非弹性反应谱的影响.最后结合简谐地震动模型和地震动分量的性质, 讨论脉冲型地震动非弹性反应谱诸多特征的产生原因.分析发现, 低频分量不仅是控制脉冲型地震动速度和位移幅值的主要因素, 其对原始地震动的加速度幅值也具有不可忽略的影响.低频分量也是导致脉冲型地震动非弹性位移比谱偏大以及强度折减系数谱偏小的直接原因, 从而造成结构在脉冲型地震动作用下需要具有更大的非弹性位移以及更高的强度需求.  相似文献   

5.
改进能力谱法可以较好地评估结构抗震性能,在工程中得到了广泛的应用.本文在此基础上指出,由改进能力谱方法求得的延性是结构的延性需求,并不是结构的实际延性能力,不能以此代表结构在罕遇地震作用下的实际抗震能力.其次,基于弹塑性损伤反应谱(简称"RD谱"),结合模态Pushover分析,提出了基于RD谱的能力谱分析方法,通过R...  相似文献   

6.
An investigation on the validity of the conventional design approach known as constant displacement ductility is carried out. The hysteretic behaviour described by the Modified Takeda model is taken to represent the characteristics of reinforced concrete structural systems. The results presented in the form of seismic damage spectra indicate that the conventional design approach may not be valid because cumulative damage is excessively high. The inelastic design spectra based on the constant‐damage concept are proposed in terms of simplified expressions. The expressions are derived from constant‐damage design spectra computed by non‐linear response analysis for SDOF systems subjected to ground motions recorded on rock sites, alluvium deposits, and soft‐soil sites. The proposed expressions, which are dependent on the local soil conditions, are functions of target seismic damage, displacement ductility ratio and period of vibration. The seismic damage of structures that have been designed based on this new design approach is also checked by a design‐and‐evaluation approach. The results are found to be satisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
By means of a graphical procedure, the capacity spectrum method compares the capacity of a structure with the demands of earthquake ground motion on it. In the present version of the method, highly damped elastic spectra have been used to determine seismic demand. A more straightforward approach for the determination of seismic demand is based on the use of the inelastic strength and displacement spectra which can be obtained directly by time-history analyses of inelastic SDOF systems, or indirectly from elastic spectra. The advantages of the two approaches (i.e. the visual representation of the capacity spectrum method and the superior physical basis of inelastic demand spectra) can be combined. In this paper, the idea of using inelastic demand spectra within the capacity spectrum method has been elaborated and is presented in an easy to use format. The approach represents the so-called N2 method formulated in the format of the capacity spectrum method. By reversing the procedure, a direct displacement-based design can be performed. The application of the modified capacity spectrum method is illustrated by means of two examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
不同地震作用水准的设计反应谱长期以来一直采用各水准谱形完全一致的假定。这与地震危险性分析的一般结论不符。《建筑抗震设计规范》(GB50011-2001)对此作出了修订。本文基于设计反应谱的三参数标定模型推导了罕遇和多遇地震作用设计反应谱的关系,指出两者谱值之比在高频、中频和低频段分别对应于峰值加速度、速度和位移之比。引入地震动衰减规律进行了罕遇和多遇地震作用设计谱关系的近似估计,提出了基于多遇地震作用设计谱确定罕遇地震作用设计谱的调整方案,验证了现行规范将反应谱特征周期适当延长以得到罕遇地震作用设计谱的做法的合理性。  相似文献   

9.
本文回顾了地震反应分析理论发展的三个阶段,指出反应谱理论仍然是许多国家现阶段抗震设计的理论依据,我国规范也主要采用反应谱法进行抗震设计分析。进一步讨论了反应谱与抗震设计反应谱的联系和区别。把我国《建筑抗震设计规范(GB50011—2001)》中有关地震影响系数分别与ISO 3010:2001(E)和美国的建筑抗震设计规范中的地震影响系数做了对比,发现我国规范有些地方考虑得还不够全面,还需要不断地完善。提出在抗震设计中运用地震动参数代替地震烈度来进行计算能更好地反映工程实际情况。  相似文献   

10.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The conventional approach of obtaining the inelastic response spectra for the aseismic design of structures involves the reduction of elastic spectra via response modification factors. A response modification factor is usually taken as a product of (i) strength factor, RS, (ii) ductility factor, Rμ, and (iii) redundancy factor, RR. Ductility factor, also known as strength reduction factor (SRF), is considered to primarily depend on the initial time period of the single‐degree‐of‐freedom (SDOF) oscillator and the displacement ductility demand ratio for the ground motion. This study proposes a preliminary scaling model for estimating the SRFs of horizontal ground motions in terms of earthquake magnitude, strong motion duration and predominant period of the ground motion, geological site conditions, and ductility demand ratio, with a given level of confidence. The earlier models have not considered the simultaneous dependence of the SRFs on various governing parameters. Since the ductility demand ratio is not a complete measure of the cumulative damage in the structure during the earthquake‐induced vibrations, the existing definition of the SRF is sought to be modified with the introduction of damage‐based SRF (in place of ductility‐based SRF). A parallel scaling model has been proposed for estimating the damage‐based SRFs. This model considers damage and ductility supply ratio as parameters instead of ductility demand ratio. Through a parametric study on ductility‐based SRFs, it has been shown that the hitherto assumed insensitivity of earthquake magnitude and strong motion duration may not be always justified and that the initial time period of the oscillator plays an important role in the dependence of SRF on these parameters. Further, the damage‐based SRFs are found to show similar parametric dependence as observed in the case of the ductility‐based SRFs. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Modern seismic design allows a structure to develop inelastic response during moderate to severe earthquakes. The emerging performance-based design requires more clearly defined levels of inelastic response, or damage, to be targeted for different earthquake hazard levels. While there are a range of factors that could influence the level of damage and hence the performance, the design strength remains to be a fundamental design parameter that is inherently related to the structural performance. In this paper, the response reduction factor, which is a normalized form of the design strength, is investigated on a direct damage basis. The implications of the damage-based strength reduction factor (SRF), denoted as RD factor, on multiple performance targets are discussed. A series of RD spectra are generated from a large set of ground motions in different groupings to examine the effects of local site condition, earthquake magnitude and distance to rupture on the RD spectra. The overall mean and standard deviation of the RD spectra for different levels of damage are obtained, and simple empirical formulas are proposed.  相似文献   

13.
Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi‐parametric task, which is related to both epistemic and aleatory uncertainty. Along these lines, the objective of this paper is to investigate and quantify the elongated fundamental period of reinforced concrete structures using inelastic response spectra defined on the basis of the period shift ratio (Tin/Tel). Nonlinear oscillators of varying yield strength (expressed by the force reduction factor, Ry), post‐yield stiffness (ay) and hysteretic laws are examined for a large number of strong motions. Constant‐strength, inelastic spectra in terms of Tin/Tel are calculated to assess the extent of period elongation for various levels of structural inelasticity. Moreover, the influence that structural characteristics (Ry, ay and degrading level) and strong‐motion parameters (epicentral distance, frequency content and duration) exert on period lengthening are studied. Determined by regression analyses of the data obtained, simplified equations are proposed for period lengthening as a function of Ry and Tel. These equations may be used in the framework of the earthquake record selection and scaling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand.  相似文献   

15.
The elastic and inelastic seismic response of plan‐asymmetric regular multi‐storey steel‐frame buildings has been investigated under bi‐directional horizontal ground motions. Symmetric variants of these buildings were designed according to Eurocodes 3 and 8. Asymmetric buildings were created by assuming a mass eccentricity in each of the two principal directions. The torsional response in the elastic and inelastic range is qualitatively similar with the exception of the stiff edge in the strong direction of torsionally stiff buildings and the stiff edge in the weak direction of torsionally flexible buildings. The response is influenced by the intensity of ground motion, i.e. by the magnitude of plastic deformation. In the limiting case of very strong ground motion, the behaviour of initially torsionally stiff and initially torsionally flexible buildings may become qualitatively similar. A decrease in stiffness due to plastic deformations in one direction may substantially influence the behaviour in the orthogonal direction. The response strongly depends on the detailed characteristics of the ground motion. On average, torsional effects are reduced with increasing plastic deformations, unless the plastic deformations are small. Taking into account also the dispersion of results which is generally larger in the inelastic range than in the elastic one, it can be concluded that (a) the amplification of displacements determined by the elastic analysis can be used as a rough estimate also in the inelastic range and (b) any favourable torsional effect on the stiff side of torsionally stiff buildings, which may arise from elastic analysis, may disappear in the inelastic range. The conclusions are limited to fairly regular buildings and subject to further investigations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The estimation of cyclic deformation demand resulting from earthquake loads is crucial to the core objective of performance‐based design if the damage and residual capacity of the system following a seismic event needs to be evaluated. A simplified procedure to develop the cyclic demand spectrum for use in preliminary seismic evaluation and design is proposed in this paper. The methodology is based on estimating the number of equivalent cycles at a specified ductility. The cyclic demand spectrum is then determined using well‐established relationships between seismic input energy and dissipated hysteretic energy. An interesting feature of the proposed procedure is the incorporation of a design spectrum into the proposed procedure. It is demonstrated that the force–deformation characteristics of the system, the ductility‐based force‐reduction factor Rμ, and the ground motion characteristics play a significant role in the cyclic demand imposed on a structure during severe earthquakes. Current design philosophy which is primarily based on peak response amplitude considers cyclic degradation only in an implicit manner through detailing requirements based on observed experimental testing. Findings from this study indicate that cumulative effects are important for certain structures, classified in this study by the initial fundamental period, and should be incorporated into the design process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
应用弹塑性反应谱对IDA方法的改进研究   总被引:5,自引:1,他引:5  
针对传统IDA方法中结构的加速度反应远高于SPO分析结果的现象,采用弹塑性反应谱作为IDA的烈度度量,同时给出随地震烈度改变而不断变化的屈服强度系数,提出了改进的IDA方法,更有效地考虑了结构的非线性地震反应特征。实际工程分析表明,改进的IDA方法能够体现结构的非线性受力反应,同时兼顾结构的动力反应特征,与SPO曲线和由规范计算得到的结构承载力有更好的可比较性。  相似文献   

18.
In spite of important differences in structural response to near‐fault and far‐fault ground motions, this paper aims at extending well‐known concepts and results, based on elastic and inelastic response spectra for far‐fault motions, to near‐fault motions. Compared are certain aspects of the response of elastic and inelastic SDF systems to the two types of motions in the context of the acceleration‐, velocity‐, and displacement‐sensitive regions of the response spectrum, leading to the following conclusions. (1) The velocity‐sensitive region for near‐fault motions is much narrower, and the acceleration‐sensitive and displacement‐sensitive regions are much wider, compared to far‐fault motions; the narrower velocity‐sensitive region is shifted to longer periods. (2) Although, for the same ductility factor, near‐fault ground motions impose a larger strength demand than far‐fault motions—both demands expressed as a fraction of their respective elastic demands—the strength reduction factors Ry for the two types of motions are similar over corresponding spectral regions. (3) Similarly, the ratio um/u0 of deformations of inelastic and elastic systems are similar for the two types of motions over corresponding spectral regions. (4) Design equations for Ry (and for um/u0) should explicitly recognize spectral regions so that the same equations apply to various classes of ground motions as long as the appropriate values of Ta, Tb and Tc are used. (5) The Veletsos–Newmark design equations with Ta=0.04 s, Tb=0.35 s, and Tc=0.79 s are equally valid for the fault‐normal component of near‐fault ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this work is to propose seismic reliability‐based relationships between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties. The isolated structures are described by employing an equivalent 2dof model characterized by a perfectly elastoplastic rule to account for the inelastic response of the superstructure, whereas, the FPS behavior is described by a velocity‐dependent model. An extensive parametric study is carried out encompassing a wide range of elastic and inelastic building properties, different seismic intensity levels and considering the friction coefficient as a random variable. Defined a set of natural seismic records and scaled to the seismic intensity corresponding to life safety limit state for L'Aquila site (Italy) according to NTC08, the inelastic characteristics of the superstructures are designed as the ratio between the average elastic responses and increasing strength reduction factors. Incremental dynamic analyses (IDAs) are developed to evaluate the seismic fragility curves of both the inelastic superstructure and the isolation level assuming different values of the corresponding limit states. Integrating the fragility curves with the seismic hazard curves related to L'Aquila site (Italy), the reliability curves of the equivalent inelastic base‐isolated structural systems, with a design life of 50 years, are derived proposing seismic reliability‐based regression expressions between the displacement ductility demand and the strength reduction factors for the superstructure as well as seismic reliability‐based design (SRBD) abacuses useful to define the FPS properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
平面不规则结构非弹性扭转地震反应研究进展   总被引:1,自引:0,他引:1  
不规则建筑结构在侧向地震荷载作用下由于质量中心和刚度中心的不重合导致平扭耦联反应的发生,使得结构构件的变形需求分布在结构平面内并不一致,从而产生附加的强度和变形需求。尽管不规则建筑结构在地震作用下的扭转问题一直受到研究学者的关注和研究,并取得了很多显著的成果,但仍然存在着一些争议,有待于继续深入研究。本文从结构的分析模型、影响参数及地震动输入等方面回顾总结了平面不规则建筑结构在地震作用下非弹性扭转的研究进展,结合当前的研究工作指出今后研究的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号