共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reports on the investigation of novel fiber reinforced elastomeric isolator (FREI) bearings, which do not have thick end plates, and are used in an unbonded application. Owing to the stable lateral load‐displacement response exhibited by the unbonded FREI bearings, the proposed bearings are referred to as stable unbonded (SU)‐FREIs. A shake table test program was conducted on a two‐story test‐structure having well‐defined elastic response characteristics. Compared with the results for the corresponding fixed base (FB) structure, the peak response values, distribution of lateral response throughout the height of the structure, and response time histories of the tested base isolated (BI) structure indicate that significantly improved response can be achieved. This study clearly indicates that SU‐FREI bearings can provide an effective seismic isolation system. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
Structural and nonstructural performance of a seismically isolated building using stable unbonded fiber‐reinforced elastomeric isolators 下载免费PDF全文
Stable unbonded fiber‐reinforced elastomeric isolators (SU‐FREIs) exhibit a characteristic horizontal softening and stiffening response, similar to other adaptive devices such as the triple friction pendulum and sliding systems with variable curvature. The transition between the softening and stiffening occurs at a displacement corresponding to a unique deformation known as full rollover. In this paper, the full rollover displacement of SU‐FREIs is altered by using modified support geometry (MSG), a geometric modification of the upper and lower supports applied to tailor the hysteresis loops of the isolator. Experimental results are used to calibrate a numerical model of a base‐isolated structure. The model demonstrates that the stiffening regime provides minimal restraint against displacements during events that meet or exceed the maximum considered earthquake. A parametric study revealed that the level of stiffening required to restrain displacements during large events is significant. This increase in stiffness is reflected in an increase in the response of the structure and light nonstructural components. Full rollover and MSG is considered advantageous to maintain horizontal stability and provide control over the stiffening of SU‐FREIs. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Comparison of fundamental properties of new types of fiber‐mesh‐reinforced seismic isolators with conventional isolators 下载免费PDF全文
New types of fiber‐reinforced rubber‐based seismic isolators have been a research interest for a number of engineers in the past decade. These new types of isolators can have similar seismic performances compared with the conventional ones. In most of the previous researches, the fiber‐reinforced rubber‐based isolators is usually manufactured with placing fiber sheets between precut rubber layers with the use of a bonding agent. This research differs from the previous researches in terms of manufacturing process, use of fiber mesh instead of fiber sheets, and use of lead in the core for some of the bearings. The aim of this research is to provide comparisons in fundamental seismic response properties of the new type of fiber mesh reinforced isolators and conventional isolators. In this scope, four pairs of fiber mesh reinforced elastomeric bearings and four pairs of steel‐reinforced elastomeric bearings are subjected to various levels of compression stresses and cyclic shear strains under constant vertical pressure. The tested types of isolators are fiber mesh reinforced elastomeric bearing, fiber mesh reinforced elastomeric bearing with lead core, steel‐reinforced elastomeric bearings, and steel‐reinforced elastomeric bearings with lead core. In this research, steel‐reinforced bearings are called conventional isolators. The major advantage for fiber mesh reinforced bearings observed during the tests is that these isolators can develop a considerable low horizontal stiffness compared with the conventional isolators. The damping characteristics of the new and conventional types are similar to each other. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
The uncertainty in the seismic demand of a structure (referred to as the engineering demand parameter, EDP) needs to be properly characterized in performance‐based earthquake engineering. Uncertainties in the ground motion and in structural properties are responsible for EDP uncertainty. In this study, sensitivity of EDPs to major uncertain variables is investigated using the first‐order second‐moment method for a case study building. This method is shown to be simple and efficient for estimating the sensitivity of seismic demand. The EDP uncertainty induced by each uncertain variable is used to determine which variables are most significant. Results show that the uncertainties in ground motion are more significant for global EDPs, namely peak roof acceleration and displacement, and maximum inter‐storey drift ratio, than those in structural properties. Uncertainty in the intensity measure (IM) of ground motion is the dominant variable for uncertainties in local EDPs such as the curvature demand at critical cross‐sections. Conditional sensitivity of global and local EDPs given IM is also estimated. It is observed that the combined effect of uncertainties in structural properties is more significant than uncertainty in ground motion profile at lower IM levels, while the opposite is true at higher IM levels. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
It has been well documented that following a major earthquake a substantial percentage of economic loss results from downtime of essential lifelines in and out of major urban centres. This has thus led to an improvement of both performance‐based seismic design philosophies and to the development of cost‐effective seismic structural systems capable of guaranteeing a high level of protection, low structural damage and reduced downtime after a design‐level seismic event. An example of such technology is the development of unbonded post‐tensioned techniques in combination with rocking–dissipating connections. In this contribution, further advances in the development of high‐performance seismic‐resistant bridge piers are achieved through the experimental validation of unbonded post‐tensioned bridge piers with external, fully replaceable, mild steel hysteretic dissipaters. The experimental response of three 1 : 3 scale unbonded, post‐tensioned cantilever bridge piers, subjected to quasi‐static and pseudo‐dynamic loading protocols, are presented and compared with an equivalently reinforced monolithic benchmark. Minimal physical damage is observed for the post‐tensioned systems, which exhibit very stable energy dissipation and re‐centring properties. Furthermore, the external dissipaters can be easily replaced if severely damaged under a major (higher than expected) earthquake event. Thus, negligible residual deformations, limited repair costs and downtime can be achieved for critical lifeline components. Satisfactory analytical–experimental comparisons are also presented as a further confirmation of the reliability of the design procedure and of the modelling techniques. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
Three‐dimensional beam‐truss model for reinforced concrete walls and slabs – part 1: modeling approach,validation, and parametric study for individual reinforced concrete walls 下载免费PDF全文
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Reinforced concrete columns with insufficient transverse reinforcement and non‐seismic reinforcement details are vulnerable to brittle shear failure and to loss of axial load carrying capacity in the event of a strong earthquake. In this paper, a procedure is presented after examining the application of two macro models for displacement‐based analysis of reinforced concrete columns subjected to lateral loads. In the proposed model, lateral load‐deformation response of the column is simulated by estimating flexural and shear deformation components separately while considering their interaction and then combining these together according to a set of rules depending upon column's yield, flexural and shear strengths. In addition, lateral deformation caused by reinforcement slip in beam–column joint regions and buckling of compression bars are taken into account and considered in the analysis. Implementation of the proposed procedure produces satisfactory lateral load–displacement relationships, which are comparable with experimental data. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
Nine large‐scale beam specimens were constructed. Of which, one was used as the control, whereas the other eight ones were divided into four sets. Each set had two specimens and was subjected to accelerated corrosion using an imposed current for the same time interval. Following the corrosion, a specimen in each set was tested using cyclic loading to examine the seismic performance, whereas the other one was demolished to examine the extent of corrosion. Cyclic loading results indicated that with an increasing corrosion level, the ultimate drift, ductility, plastic rotation capacity, and energy dissipation of the beams initially increased and later decreased. The failure mode switched from flexural failure, largely owing to buckling of the longitudinal reinforcement to flexural‐shear failure, which is mainly caused by fracturing of the transverse reinforcement. Corrosion increased shear deformation and the spread of plasticity of the plastic hinge region. The residual flexural strength, as estimated by an empirical equation based on the maximum pit depth in the longitudinal reinforcement, closely corresponds to experimental values. Furthermore, the residual shear strength estimated based on the minimum reduced cross‐sectional area of transverse reinforcement correlates better with the experimental observations than that based on the weight loss. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
Pre‐ and post‐test analyses of the structural response of a three‐storey asymmetric reinforced concrete frame building were performed, aimed at supporting test preparation and performance as well as studying mathematical modelling. The building was designed for gravity loads only. Full‐scale pseudo‐dynamic tests were performed in the ELSA laboratory in Ispra. In the paper the results of initial parametric studies, of the blind pre‐test predictions, and of the post‐test analysis are summarized. In all studies a simple mathematical model, with one‐component member models with concentrated plasticity was employed. The pre‐test analyses were performed using the CANNY program. After the test results became available, the mathematical model was improved using an approach based on a displacement‐controlled analysis. Basically, the same mathematical model was used as in pre‐test analyses, except that the values of some of the parameters were changed. The OpenSees program was employed. Fair agreement between the test and numerical results was obtained. The results prove that relatively simple mathematical models are able to adequately simulate the detailed seismic response of reinforced concrete frame structures to a known ground motion, provided that the input parameters are properly determined. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
A series of dynamic experiments was performed on two‐story glue‐laminated timber frames. The tests included sinusoidal sweeps in one direction, arbitrary signals simulating earthquake loads in two directions, and harmonic free vibration at the fundamental frequency. Two experimental frames were manufactured and tested: (1) a control with horizontal laminations and no reinforcement at joint areas, and (2) a new frame design with densified material in the joint area that was further reinforced by glass‐fiber composite material. Preliminary tests of scaled and full‐size beam‐to‐column connections were performed to obtain connection characteristics needed for subsequent analytical modeling. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
12.
为了研究低层装配式钢筋混凝土水平坐浆墙体的抗震性能,对3个不同剪跨比的低层装配式钢筋混凝土水平坐浆墙体进行了低周反复荷载试验。根据试验结果,分析了剪跨比对墙体的破坏形态、承载力、变形能力、刚度退化和耗能能力的影响。结果表明:随着剪跨比的减小,墙体的破坏形态由弯曲破坏转为剪切破坏;试件SW2和试件SW3的承载力相对于试件SW1分别提高68%和110%,延性分别降低21.8%和37.5%;试件SW1的耗能能力最好,刚度退化速度最缓慢;预制钢筋混凝土墙板与现浇边缘构件协同合作,连接处无竖向裂缝,墙体整体性较好,具有良好的抗震性能,可用于我国城镇建设中的低层住宅结构。 相似文献
13.
Because of many advantages over other control systems, semi‐active control devices have received considerable attention for applications to civil infrastructures. A variety of different semi‐active control devices have been studied for applications to buildings and bridges subject to strong winds and earthquakes. Recently, a new semi‐active control device, referred to as the resetable semi‐active stiffness damper (RSASD), has been proposed and studied at the University of California, Irvine (UCI). It has been demonstrated by simulation results that such a RSASD is quite effective in protecting civil engineering structures against earthquakes, including detrimental near‐field earthquakes. In this paper, full‐scale hardware for RSASD is designed and manufactured using pressurized gas. Experimental tests on full‐scale RSASDs have been conducted to verify the hysteretic behaviours (energy dissipation characteristics) and the relation between the damper stiffness and the gas pressure. The correlation between the experimental results of the hysteresis loops of RASADs and that of the theoretical ones has been assessed qualitatively. Experimental results further show the linear relation between the gas pressure and the stiffness of the RSASD as theoretically predicted. Finally, shake table tests have also been conducted using an almost full‐scale 3‐storey steel frame model equipped with full‐scale RSASDs at the National Center for Research on Earthquake Engineering (NCREE), Taipei, Taiwan, and the results are presented. Experimental results demonstrate the performance of RSASDs in reducing the responses of the large‐scale building model subject to several near‐field earthquakes. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
Fundamental period of vibration appears to be one of the most critical parameter for the seismic design of buildings because this period strongly affects the magnitude of seismic forces. In this paper, an empirical formula for estimating the fundamental period of reinforced concrete structures is recommended, on the basis of the vibration analysis of 20 different real building configurations. These structures have already been constructed in Greece, and they are analyzed by using in detail 3‐D finite element models and modal eigenvalue analysis. These models take into account the presence of external and internal infill walls, which are usually ignored as nonstructural elements. This neglect leads to unreliable evaluation of period because the infill walls' contribution to the lateral stiffness and therefore to the fundamental period of vibration is also ignored. Furthermore, taking into account that the flexibility of soil elongates the fundamental period, the soil–structure interaction effect is also considered. To achieve a unique, simple, and effective empirical expression for the fundamental period of vibration, a comprehensive nonlinear regression analysis is applied for the datasets of buildings under consideration. This empirical expression is also compared with the similar expressions from the pertinent literature. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
Earthquake simulation tests were conducted on a 1 : 15‐scale 25‐story building model to verify the seismic performance of high‐rise reinforced‐concrete flat‐plate core‐wall building structures designed per the recent seismic code KBC 2009 or IBC 2006. The following conclusions can be drawn from the test results: (1) The vertical distribution of acceleration during the table excitations revealed the effect of the higher modes, whereas free vibration after the termination of the table excitations was governed by the first mode. The maximum values of base shear and roof drift during the free vibration are either similar to or larger than the values of the maximum responses during the table excitation. (2) With a maximum roof drift ratio of 0.7% under the maximum considered earthquake in Korea, the lateral stiffness degraded to approximately 50% of the initial stiffness. (3) The crack modes appear to be a combination of flexure and shear in the slab around the peripheral columns and in the coupling beam. Energy dissipation via inelastic deformation was predominant during free vibration after the termination of table excitation rather than during table excitation. Finally, (4) the walls with special boundary elements in the first story did not exhibit any significant inelastic behavior, with a maximum curvature of only 21% of the ultimate curvature, corresponding to an ultimate concrete compressive strain of 0.00638 m/m intended in the displacement‐based design approach. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
A procedure based on rigorous non‐linear analysis is presented that estimates the peak deformation among all isolators in an asymmetric building due to strong ground motion. The governing equations are reduced to a form such that the median normalized deformation due to an ensemble of ground motions with given corner period Td depends primarily on four global parameters of the isolation system: the isolation period Tb, the normalized strength η, the torsional‐to‐lateral frequency ratio Ωθ, and the normalized stiffness eccentricity eb/r. The median ratio of the deformations of the asymmetric and corresponding symmetric systems is shown to depend only weakly on Tb, η, and Ωθ, but increases with eb/r. The equation developed to estimate the largest ratio among all isolators depends only on the stiffness eccentricity and the distance from the center of mass to the outlying isolator. This equation, multiplied by an earlier equation for the deformation of the corresponding symmetric system, provides a design equation to estimate the deformations of asymmetric systems. This design equation conservatively estimates the peak deformation among all isolators, but is generally within 10% of the ‘exact’ value. Relative to the non‐linear procedure presented, the peak isolator deformation is shown to be significantly underestimated by the U.S. building code procedures. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
The seismic damages commonly observed on beam–column joints of old reinforced concrete structures, built with plain bars and without proper detailing, justifies the need to further study the behaviour of this type of structures. The response of these structures when loaded cyclically, as occurs during the earthquakes, is partially controlled by the bond properties between the reinforcing bars and the surrounding concrete. This paper presents the results of an experimental campaign of unidirectional cyclic tests carried out on six full‐scale beam–column joints built with plain bars. These joint specimens are representative of existing reinforced concrete structures, that is, built without adequate reinforcement detailing for seismic demands. For comparison, an additional specimen is built with deformed bars and tested. The seven specimens are designed and detailed to allow the investigation of the influence of bond properties, lapping of the longitudinal bars in columns and beams, bent‐up bars in the beams, slab contribution and concrete strength. The lateral force–drift relationships, global dissipated energy evolution, contribution of the joint, beams and columns to the global dissipated energy, ductility, equivalent damping, final damage observed, homogenized reinforced concrete damage index, displacement components, curvature evolutions and Eurocode requirements are presented and discussed. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Stefano Silvestri Salvador Ivorra Laura Di Chiacchio Tomaso Trombetti Dora Foti Giada Gasparini Luca Pieraccini Matt Dietz Colin Taylor 《地震工程与结构动力学》2016,45(1):69-89
According to Eurocode 8, the seismic design of flat‐bottom circular silos containing grain‐like material is based on a rough estimate of the inertial force imposed on the structure by the ensiled content during an earthquake: 80% of the mass of the content multiplied by the peak ground acceleration. A recent analytical consideration of the horizontal shear force mobilised within the ensiled material during an earthquake proposed by some of the authors has resulted in a radically reduced estimate of this load suggesting that, in practice, the effective mass of the content is significantly less than that specified. This paper describes a series of laboratory tests that featured shaking table and a silo model, which were conducted in order to obtain some experimental data to verify the proposed theoretical formulations and to compare with the established code provisions. Several tests have been performed with different heights of ensiled material – about 0.5 mm diameter Ballotini glass – and different magnitudes of grain–wall friction. The results indicate that in all cases, the effective mass is indeed lower than the Eurocode specification, suggesting that the specification is overly conservative, and that the wall–grain friction coefficient strongly affects the overturning moment at the silo base. At peak ground accelerations up to around 0.35 g, the proposed analytical formulation provides an improved estimate of the inertial force imposed on such structures by their contents. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Dispersions for the pushover‐based risk assessment of reinforced concrete frames and cantilever walls 下载免费PDF全文
The paper presents the results of an investigation into the dispersion values, expressed in terms of limit‐state spectral accelerations, which could be used for the pushover‐based risk assessment of low‐height to mid‐height reinforced concrete frames and cantilever walls. The results of an extensive parametric study of a portfolio of test structures indicated that the dispersion values due to record‐to‐record variability and modelling uncertainty (βLS,RU) are within the range from 0.3 to 0.55 for the near collapse limit state, and between 0.35 and 0.60 for the collapse limit state. The dispersions βLS,RU proposed for the code‐conforming and the majority of old (non code‐conforming) frames are in between these values. On the other hand, the dispersions proposed for the old frames with a soft storey and an invariant plastic mechanism, and for the code‐conforming cantilever walls, are at the lower and upper bounds of the presented values, respectively. The structural parameters that influence these dispersions were identified, and the influence of different ground motion sets, and of the models used for the calculation of the rotation capacities of the columns, on the calculated fragility parameters was examined and quantified. The proposed dispersion values were employed in a practice‐oriented pushover‐based method for the estimation of failure probability for eight selected examples. The pushover‐based risk assessment method, although extremely simple and economical when compared with more rigorous probabilistic methods, was able to predict seismic risk with reasonable accuracy, thus showing it to be a practical tool for engineers. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献