首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Past seismic events, including the 2009 L’Aquila earthquake and the 2012 Emilia earthquake, clearly demonstrated the inadequacy of the current design approach for the connection system of the cladding wall panels of precast buildings. To clarify this problem the present paper investigates the seismic behaviour of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels. This system consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure, one at the top and one at the bottom, so to have under seismic action a pure frame behaviour where the wall panels are masses without stiffness. Adding mutual connections between the panels, the wall cladding panels become part of the resisting structure, leading to a dual frame/wall system or to a wall system depending on the stiffness of the connections. The seismic behaviour of this structural assembly is investigated for different degrees of interaction between frame and panels, as well as for an enhanced solution with dissipative connections. The results of nonlinear static (pushover) analyses and nonlinear dynamic analyses under recorded and artificial earthquakes highlight the role of the wall panel connections on the seismic behaviour of the structural assembly and show the effectiveness of the dual frame/wall system with dissipative connections between panels.  相似文献   

2.
Recent earthquakes in Italy (L'Aquila 2009 and Emilia 2012) highlighted the vulnerability of precast cladding panels, typically associated with a connection system not designed to account for displacement and rotation compatibility between the panels and the supporting structure. Experimental investigations were performed in the past to investigate the in‐plane performance of cladding panels and design recommendations have been made accordingly; however, in the case of out‐of‐plane seismic loads, the load demand is commonly evaluated in the design practice by means of formulations for nonstructural components. This paper summarizes the results obtained from parametric analyses conducted to estimate the out‐of‐plane load demand in column‐to‐column cladding panels typical of one‐storey commercial and industrial buildings. Empirical equations suitable for both new and existing panels are proposed and compared with the design equations given in Eurocode 8 and ASCE 7. The paper also considers the effects of the development of plastic hinges at the column base and of the roof flexibility on the load demand in panel‐to‐column connections. The roof flexibility may generate the torsion of the panels; consequently, an analytical procedure to account for such effects is proposed. Finally, general design recommendations are made.  相似文献   

3.
Within the last decades, simplified methods alternative to dynamic nonlinear analysis have been developed to estimate the seismic performance of structures toward a performance‐oriented design. Considering drift as the main parameter correlated with structural damage, its estimation is of main importance to assess the structural performance. While traditional force‐based design deals with calibrated force reduction factors based on the expected structural ductility, other methods are based on the definition of a viscous damping factor defined as a function of the expected energy dissipated by the structure. An example is the capacity spectrum method. This method can be applied even without any a priori calibration or designer arbitrariness. This allows considering several peculiarities of the seismic behavior of precast structures, which may be influenced by nontraditional hysteresis of connections and members, interaction with the cladding panels, Pδ effects, etc. The paper aims at verifying the soundness and accuracy of this method through the comparison of its predictions against the results of cyclic and pseudodynamic tests on precast structures, including single‐ and multistory buildings either stiff or flexible, obtained on full‐scale building prototypes tested within the framework of recent research projects (namely, “Precast Structures EC8,” “Safecast,” and “Safecladding”). Two simple methodologies of determination of the equivalent viscous damping from a force‐displacement cycle, based on the dissipated energy in relation to 2 different estimates of the elastic strain energy, are addressed and compared. Comments on the possible use of this procedure for the estimation of the seismic performance of precast structures are provided.  相似文献   

4.
This paper presents an analytical investigation on the seismic design and response of coupled wall structures that use unbonded post‐tensioned steel coupling beams. Both monolithic cast‐in‐place reinforced concrete wall piers and precast concrete wall piers are considered. Steel top and seat angles are used at the coupling beam ends for energy dissipation. The seismic design of prototype structures to achieve target displacement‐based performance objectives is evaluated based on nonlinear static and dynamic time history analyses. Additional recommendations are provided on shear design. Comparisons with ‘conventional’ structures that use embedded steel coupling beams as well as isolated walls with no coupling are provided. The results indicate that while the peak lateral displacements of unbonded post‐tensioned coupled wall structures are larger than the peak displacements of structures with embedded beams, the residual displacements are significantly reduced as a result of the restoring effect of the post‐tensioning steel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Large panel precast concrete structures are built in major seismic regions throughout the world. The seismic behaviour of such structures is strongly dependent upon the characteristics of both the horizontal and vertical connections. The limiting behaviour of precast systems, however, is basically dependent upon the horizontal connection. The influence of horizontal connections can be studied in terms of the behaviour of a simple wall—a vertical stack of panels having only horizontal connections. This paper reports on research into the seismic behaviour of simple precast concrete walls. The research was carried out through the development of computer-based modelling techniques capable of including the typical behavioural characteristics associated with horizontal joints. The model assumes that all non-linear, inelastic behaviour is concentrated in the connection regions and that the precast panels remain linear elastic. This assumption allows the precast panels to be modelled as statically condensed ‘super-elements’ and the connection regions as interface elements. The above modelling technique allows for non-linear-inelastic seismic analysis that is capable of handling both rocking type motions throughout the height of the structure and slippage due to shear in the plane of the connection. A series of parametric studies are presented to illustrate the potential influence of rocking and slip on precast walls with both regular reinforcement and post-tensioning. These studies demonstrate the period elongation associated with the nonlinear-elastic rocking phenomenon. Shear slip is found to occur only when friction coefficients are extremely low or when the normal forces across the connections are low. This latter case occurs only in low buildings or in the upper floors of tall buildings. The paper concludes with a brief discussion of the design implications of these results. Particular attention is paid to the problems stemming from the force concentrations associated with rocking and shear slip.  相似文献   

6.
为了提高装配式剪力墙的抗震性能,提出并设计了一片暗柱内置H型钢装配式内藏钢桁架混凝土剪力墙及一片暗柱内置圆钢管装配式内藏钢桁架混凝土剪力墙,其中H型钢竖向连接采用顶底角钢复合连接,圆钢管竖向连接采用端板焊接.通过对试件进行低周反复加载试验,得到剪力墙试件的破坏模式、滞回曲线、承载力、延性、残余变形、刚度退化和耗能能力等...  相似文献   

7.
阐述了预制钢筋混凝土剪力墙结构抗震性能研究的重要性和预制钢筋混凝土剪力墙结构抗震性能研究的最新进展。综述了国内外预制钢筋混凝土剪力墙结构设计规范以及设计方法的研究进展。指出常规预制装配式钢筋混凝土剪力墙结构的抗震性能较差,在地震作用下,主要靠结构构件连接处的损伤和结构构件损坏来消耗能量;无粘结后张拉预应力预制混凝土剪力墙结构,在地震作用下具有自恢复中心能力和良好的抗震能力,但该结构体系的耗能能力不足。认为在预制钢筋混凝土剪力墙结构中设置耗能减震元件,或将预制钢筋混凝土剪力墙结构设计成隔震结构,将有效提高预制钢筋混凝土剪力墙结构的抗震性能。该类预制装配式剪力墙结构的抗震性能有待于进一步研究。  相似文献   

8.
Dry-assembled precast concrete frame structures are typically made with dowel beam-to-column connections, which allow relative rotation along the beam direction. In the orthogonal direction the rotation of the beam is prevented but again the connections of the superimposed floor elements allow for relative rotation. All the ductility and energy dissipation demand in case of seismic action is therefore concentrated at the base of cantilever columns. Hence, the column-to-foundation connection plays a key role on the seismic performance of such structures. Mechanical connection devices, even if correctly designed for what concerns resistance, may affect the behaviour of the whole joint modifying the ductility capacity of the columns and their energy dissipation properties. An experimental campaign on different mechanical connection devices has been performed at Politecnico di Milano within the Safecast project (European programme FP7-SME-2007-2, Grant agreement No. 218417, 2009). The results of cyclic tests on full scale structural sub-assembly specimens are presented. Design rules are suggested for each of the tested connections on the basis of the experimental observations, and numerical analyses have been performed with hysteretic parameters calibrated on the experimental loops. The seismic performance of structures provided with those connections is investigated through a case study on a multi-storey precast building prototype, which has also been subject to full-scale pseudo-dynamic testing within the same research project at the European Laboratory of Structural Assessment of the Joint Research Centre of the European Commission. The comparison of the results from the structure provided with the different studied connections clearly highlights how some solutions may lead to both reduction of ductility capacity and dissipation of energy, increasing the expected structural damage and the seismic risk.  相似文献   

9.
摇摆墙释放了墙底与基础之间的约束以实现竖向摇摆。已有研究表明:将摇摆墙与RC框架结构结合形成框架-摇摆墙结构体系能有效提高结构的整体承载力及延性,使结构的破坏发生在预期的位置,减少结构地震响应的不确定性。本文首先回顾了摇摆墙的发展历史,简要介绍了框架-摇摆墙结构的基本原理,综述了框架-摇摆墙结构的研究现状,总结了其墙体及连接节点的设计要点并对其未来的发展方向进行展望,指出框架-摇摆墙结构体系后续的研究重点可以包括:墙体与RC框架结构水平连接节点的设计、摇摆墙与基础实现理想铰接的设计、摇摆墙与预制装配式技术结合的设计及摇摆墙墙体在框架结构中布局方式的设计。  相似文献   

10.
This paper presents an analytical study used to establish design factors for a new seismic design methodology for precast concrete floor diaphragms. The design factors include diaphragm force amplification factors Ψ and diaphragm shear overstrength factors Ωv. The Ψ factors are applied to the ASCE7‐05 diaphragm design forces to produce diaphragm design strengths aligned to different performance targets. These performance targets are based on diaphragm detailing choices, and include: (i) elastic diaphragm behavior or (ii) limiting inelastic deformation demand on the diaphragm reinforcement (connectors between precast units or reinforcing bars in a topping slab) to within their reliable deformation capacities. The Ωv factors provide overstrength relative to the diaphragm bending strength for capacity protection against shear failure. The analytical study was performed by conducting nonlinear time history analyses of a simple evaluation structure, of which the dimensions and structural properties were varied. The analytical model used in the study is constructed and calibrated on the basis of extensive physical testing. The analytically obtained values of the diaphragm design factors are presented as functions of the geometric and structural properties of the building. The design factors presented here have been verified through evaluation of a set of realistic precast prototype structures. The diaphragm design methodology is currently in the codification process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.  相似文献   

12.
Precast concrete structures are preferred for facilities with large open areas due to easiness in construction. Such structures are typically composed of individual columns and long‐span beams, and are quite flexible and of limited redundancy. In this paper, nonlinear dynamic analyses of a typical such structure are conducted using as excitation 54 ground motions recorded on top of a variety of soils (hard, soft, and liquefied soil sites). The results show that liquefaction‐affected level‐ground motions systematically impose a greater threat to precast‐concrete structures in terms of seismic demand, even when low values of elastic spectral acceleration prevail, as opposed to soft‐soil records and even more to hard‐soil ones. Thus, elastic spectral acceleration appears to be an insufficient engineering demand parameter for design. Soil effects, the “signature” of which is born on ground motions, are first uncovered using wavelet analysis to detect the evolution of the energy and frequency content of the ground motion in the time domain. From this, the changes in effective (“dominant”) excitation period are noted, persuasively attributed to the nature of the soil, and finally correlated with the observed structural behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The paper investigates the in-plane performance of horizontal precast reinforced concrete cladding panels, typically adopted in one-storey precast industrial and commercial buildings. Starting from in-field observations of cladding panels failures in recent earthquakes, the seismic performance of typical connections is evaluated by means of experimental tests on full-scale panels under quasi-static cyclic loading. The failure mechanisms highlight the vulnerability of such connections to relative displacements and, therefore, the need to accurately evaluate the connections displacement demand and capacity. An analytical model is developed to describe the force–displacement relationship of the considered connections and compared to the experimental results. In order to determine the seismic vulnerability of such connections and provide design recommendations, linear and nonlinear analyses are conducted taking as reference a precast concrete structure resembling an industrial precast building. The results of the analyses show the importance of a correct estimation of the column’s lateral stiffness in the design process and how an improper erection procedure leads to a premature failure of such connections.  相似文献   

14.
An innovative seismic resisting system consisting of a Pre cast W all with E nd C olumns (or PreWEC) has been developed, and its performance has been verified using large‐scale cyclic testing. The wall and end columns in the PreWEC system are anchored individually to a foundation using unbonded post‐tensioning. A newly designed, low‐cost mild steel connector is used to connect the wall and end columns horizontally along the vertical joint. The connectors are easily replaceable and provide additional hysteretic energy dissipation to the system. The PreWEC system can be economically designed to have a lateral load carrying capacity similar to that of a comparable reinforced concrete wall, while minimizing damage and providing self‐centering capability. In addition to confirming these benefits, the large‐scale test demonstrated that the PreWEC system: (i) would provide superior seismic performance compared to other currently available structural wall systems especially for the precast industry; and (ii) meets all the mandatory acceptance criteria established by the American Concrete Institute (ACI) for special unbonded post‐tensioned precast structural walls and building frame special reinforced concrete shear wall systems, as defined in the American Concrete Society of Civil Engineers (ASCE) 7‐05. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Interaction between the external wall cladding and the seismic load resisting frame was examined in a full‐scale cyclic loading test of a three‐storey steel building structure. The building specimen had Autoclaved Lightweight Concrete (ALC, also designated as Autoclaved Aerated Concrete) panels installed and anchored to the structural frame as external wall cladding, using a standard Japanese method developed following the 1995 Kobe earthquake. ALC panelling is among the most widely used material for claddings in Japan. In the test, the ALC panel cladding contributed little to the stiffness and strength of the overall structure, even under a very large storey drift of 0.04 rad. No visible damage was noted in the ALC panels other than minor cracks and spalling of the bottom of the panels in the first storey. Consequently, in a Japanese steel building with properly installed ALC panel cladding, the structural frame is likely to be little affected by its cladding, and the ALC panels are capable of accommodating the maximum storey drift generally considered in structural design without sustaining discernible damage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

17.
Properly designed precast concrete cladding could potentially provide lateral stiffness, ductility, and energy dissipation for an overall building structure, especially during earthquakes. This paper describes a set of advanced connections that take advantage of the interaction between facade panels and structure (mainly due to horizontal interstorey drift) to dissipate energy, thereby reducing the response of the main structure. The results of an experimental program to characterize the hysteretic behaviour of advanced connections are presented. Design equations for the advanced connections are then calibrated against the test results, and the corresponding design charts are presented. It is anticipated that this research will lead to innovative ways of viewing the entire cladding system of a building.  相似文献   

18.
This paper investigates the seismic response of yielding isolated structures. To establish a general understanding of the nonlinear response of seismically isolated structures, this study first investigates the nonlinear response of isolated structures subjected to steady‐state harmonic motion and nonlinear transient ground excitation. The response of both viscously damped and hysteretically damped isolation systems is investigated in three phases. Initially, basic insights are gained through simple nonlinear two degrees of freedom (2‐DOF) models subjected to harmonic motion of varying frequencies. Next, the transient response analysis of the nonlinear 2‐DOF model is investigated for a wide range of isolation system and superstructure properties. The results obtained from both approaches indicate that the yielding behavior of a structure on an isolation system is significantly different from that of the comparable fixed‐base structure. Finally, the response of the nonlinear 2‐DOF system model is compared with that of a 15‐story, three‐dimensional model. Based on the results of these analytical investigations, some important considerations for the design of seismically isolated structures are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The structural behaviour of precast shear wall-diaphragm connection was compared with the monolithic connection under seismic loading. The monolithic connection was made by using U-bars connecting shear wall and slab, and the precast connection was made by using dowel bars in two steps. Firstly, U-shaped dowel bars from the precast shear wall lower panel and precast slab were connected by the longitudinal reinforcement, and screed concreting was done above the precast slab. Secondly, the shear wall upper panel was connected using the dowel bar protruding from the shear wall lower panel. The gap between the dowel bars and the duct was filled with non-shrink grout. The specimens were subjected to reverse cyclic loading at the ends of the slab. This study also aimed to develop a 3-D numerical model using ABAQUS software. The non-linear properties of concrete were defined by using the concrete damaged plasticity(CDP) model to analyse the response of the structure. The precast dowel connection between the shear wall and slab showed superior performance concerning ductility, strength, stiffness and energy dissipation. The developed finite element model exactly predicted the behaviour of connections as similar to that of experimental testing in the laboratory. The average difference between the results from finite element analysis and experimental testing was less than 20%. The results point to the conclusion that the shear resistance is provided by the dowel bars and the stiffness of the precast specimen is due to the diaphragm action of the precast slab. The damage parameter and the interaction between structural members play a crucial role in the modelling of precast connections.  相似文献   

20.
Precast concrete panels form attractive facades for steel frame buildings and are generally regarded as non-structural by structural engineers. However, panels have been found to add lateral stiffness until their capacity or that of their connections is exceeded. Consequently, the computed dynamic response based on a model of the structural framing alone may be quite different from that experienced by the actual structure. As a case study, the influence of precast concrete panels on lateral and torsional stiffness of a 25-storey building was investigated. The effect of cladding on dynamic properties and linear seismic response was explored by varying panel stiffness. Cladding stiffness was added to the bare frame model until analytical frequency values matched vibration test results. Then, using the cladding stiffness values obtained, an accidental eccentricity between centres of mass and rigidity at each floor level was imposed and linear seismic response computed. Torsional response effects were increased substantially. Finally, a modified cladding panel connection was developed based on previously-reported studies for panelized construction. The influence of the proposed connection on overall structural response was determined for different ground motion inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号