共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural safety assessment procedures proposed in Part 3 of Eurocode 8 (EC8‐3) for the case of reinforced concrete structures are addressed. The practical evaluation of the member chord rotation demand according to EC8‐3 is examined in detail along with several alternative formulations. The need for these formulations is demonstrated by presenting example situations where the EC8‐3 proposal is difficult to apply. The effectiveness of the proposed approaches is assessed through an example application and recommendations for their practical use are defined. Given the importance of the shear span in this context, a sensitivity analysis of the EC8‐3 capacity models with respect to this parameter is carried out and discussed in a later section. This analysis aims to assess the validity of the simplifications proposed by a previous research study for the quantification of the EC8‐3 capacity values. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
This paper evaluates the American FEMA 356 and the Greek GRECO (EC 8 based) procedural assumptions for the assessment of the seismic capacity of existing buildings via pushover analyses. Available experimental results from a four-storeyed building are used to compare the two different sets of assumptions. If the comparison is performed in terms of initial stiffness or plastic deformation capacities, the different partial assumptions of the procedures lead to large discrepancies, while the opposite occurs when the comparison is performed in terms of structural performance levels at target displacements. According to FEMA 356 assumptions, effective yield point rigidities are approximately four times greater than those of EC 8. Both procedures predicted that the structure would behave elastically during low-level excitation and that the structural performance level at target displacement for a high-level excitation would be between the Immediate Occupancy and Life Safety performance levels. 相似文献
3.
The recent concerns regarding the seismic safety of the existing building stock have highlighted the need for an improvement of current seismic assessment procedures. Alongside with the development of more advanced commercial software tools and computational capacities, nonlinear dynamic analysis is progressively becoming a common and preferable procedure in the seismic assessment of buildings. Besides the complexity associated with the formulation of the mathematical model, major issues arise related with the definition of the seismic action, which can lead to different levels of uncertainty in terms of local and global building response. Aiming to address this issue, a comparative study of different code‐based record selection methods proposed by Eurocode 8, ASCE41‐13 and NZS1170.5:2004 is presented herein. The various methods are employed in the seismic assessment of four steel buildings, designed according to different criteria, and the obtained results are compared and discussed. Special attention is devoted to the influence of the number of real ground motion records selected on the estimation of the mean seismic response and, importantly, to the efficiency that is achieved when an additional selection criteria, based on the control of the spectral mismatch of each individual record with respect to the reference response spectrum, is adopted. The sufficiency of the methods with respect to the pairs of M–R of the selected group of records and the robustness of the scaling procedure are also examined. The paper closes with a study which demonstrates the suitability of a simplified probability‐based approach recently proposed for estimating mean seismic demands. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
An improved linear‐elastic analysis procedure is developed in this paper as a simple approximate method for displacement‐based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by using the results of benchmark nonlinear response history analysis, and both the conventional and the multi‐mode pushover analyses. In comparative evaluations, a twelve‐story RC plane frame and a six‐story unsymmetrical‐plan RC frame are employed by using 91 ground motion components. It is observed that the proposed procedure estimates the flexural deformation demands in deformation‐controlled members and the shear forces in force‐controlled members with reasonable accuracy. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
The period of vibration is a fundamental parameter in the force‐based design of structures as this parameter defines the spectral acceleration and thus the base shear force to which the building should be designed. This paper takes a critical look at the way in which seismic design codes around the world have allowed the designer to estimate the period of vibration for use in both linear static and dynamic analysis. Based on this review, some preliminary suggestions are made for updating the clauses related to the estimation of the periods of vibration in Eurocode 8. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
This paper summarizes results of a comprehensive analytical study aimed at evaluating the amplitude and heightwise distribution of residual drift demands in multi‐storey moment‐resisting frames after earthquake excitation. For that purpose, a family of 12 one‐bay two‐dimensional generic frame models was subjected to an ensemble of 40 ground motions scaled to different intensities. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record‐to‐record variability in the estimation of residual drift demands. The results were statistically processed in order to evaluate the influence of ground motion intensity, number of stories, period of vibration, frame mechanism, system overstrength, and hysteretic behaviour on central tendency of residual drift demands. In addition, a special emphasis was given to evaluate the uncertainty in the estimation of residual drift demands. Results of incremental dynamic analyses indicate that the amplitude and heightwise distribution of residual drift demands strongly depends on the frame mechanism, the heightwise system structural overstrength and the component hysteretic behaviour. An important conclusion for performance‐based assessment is that the evaluation of residual drift demands involves significantly larger levels of uncertainty (i.e. record‐to‐record variability) than that of maximum drift demands, which suggests that this variability and corresponding uncertainty should be explicitly taken into account when estimating residual drift demands during performance‐based seismic assessment of frame buildings. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
7.
A new modal pushover procedure is proposed for seismic assessment of asymmetric-plan buildings under bi-directional ground motions. Although the proposed procedure is a multi-mode procedure and the effects of the higher and torsional modes are considered, the simplicity of the pushover procedure is kept and the method requires only a single-run pushover analysis for each direction of excitation. The effects of the frequency content of a specific ground motion and the interaction between modes at each direction are all considered in the single-run pushover analysis. For each direction, the load pattern is derived from the combined modal story shear and torque profiles. The pushover analysis is conducted independently for each direction of motion (x and y), and then the responses due to excitation in each direction are combined using SRSS (Square Roots of Sum of Squares) combination rule. Accuracy of the proposed procedure is evaluated through two low- and medium-rise buildings with 10% two-way eccentricity under different pairs of ground motions. The results show promising accuracy for the proposed method in predicting the peak seismic responses of the sample buildings. 相似文献
8.
The application of performance-based design and assessment procedures requires an accurate estimation of local component deformation demands. In the case of steel moment-resisting frames, these are usually defined in terms of plastic rotations. A rigorous estimation of this response parameter is not straightforward, requiring not only the adoption of complex nonlinear structural models, but also of time-consuming numerical integration calculations. Moreover, the majority of existing codes and guidelines do not provide any guidance in terms of how these response parameters should be estimated. Part 3 of Eurocode 8 (EC8-3) requires the quantification of plastic rotations even when linear methods of analysis are used. Therefore, the aim of the research presented in this paper is to evaluate different methods of quantifying local component demands and also to answer the question of how reliable are the estimates obtained using the EC8-3 linear analysis procedures in comparison to more accurate nonlinear methods of analysis, particularly when the linear analysis applicability criterion proposed by EC8-3 is verified. An alternative methodology to assess the applicability of linear analysis is proposed which overcomes the important limitations identified in the EC8-3 criterion. 相似文献
9.
Methodology for practical seismic assessment of unreinforced masonry buildings with historical value 下载免费PDF全文
Historical constructions are part of the world heritage, and their survival is an important priority. Comprising mostly unreinforced, load‐bearing masonry, heritage buildings may date anywhere from antiquity to the 19th and early 20th century. Being exposed to the elements over the years, they are in various states of disrepair and material degradation. Based on postearthquake reconnaissance reports, these structures occasionally behave rather poorly, even in moderate seismic events, undergoing catastrophic damage and collapse, whereas retrofitting is governed by international conventions regarding noninvasiveness and reversibility of the intervention. The complexity of their structural systems (continuous structural components, lack of diaphragm action, material brittleness, and variability) challenges the established methods of condition assessment of preretrofitted and postretrofitted heritage constructions. The most advanced state of the art in materials and analysis tools is required, far more complex than with conventional buildings. Thus, an assessment procedure specifically geared to this class of structures is urgently needed, in order to assist engineers in this endeavor. The objective of this paper is the development of a performance‐based assessment framework that is palatable to practitioners and quite accurate in seismic assessment of unreinforced masonry buildings with no diaphragm action. The underlying theoretical background of the method is illustrated with reference to first principles: global demand is obtained from the design earthquake scenario for the region, using empirical estimates for the prevailing translational period of the system; deformation demands are localized using an approximation to the translational 3‐D shape of lateral response, estimated using a uniform gravitational field in the direction of action of the earthquake; acceptance criteria are specified in terms of relative drift ratios, referring to the in‐plane and the out‐of‐plane action of the masonry piers. The quantitative accuracy of the introduced procedure is evaluated through comparison with detailed time‐history dynamic analysis results, using a real life example case study. Qualitative relevance of the results is evaluated through comparison of the location and extent of anticipated damage estimated from the proposed assessment procedure, with reported records of the building damages that occurred during a significant past earthquake event. 相似文献
10.
In the recent past, suspended zipper‐braced frames were proposed to avoid one‐storey collapse mechanisms and dynamic instability under severe ground motions. In this paper, the design procedure suggested by Yang et al. is first slightly modified to conform to the design approach and capacity design rules stipulated in Eurocode 8 for concentrically braced frames. The procedure is applied to a set of suspended zipper‐braced frames with different number of storeys and founded on either soft or rock soil. The structural response of these frames is analysed to highlight qualities and deficiencies and to assess the critics reported by other researchers with regard to the design procedure by Yang et al. Then, improvements are proposed to this procedure to enhance the energy dissipation of the chevron braces and the response of the structural system as well. The effectiveness of the design proposals is evaluated by incremental dynamic analysis on structures with different geometric properties, gravity loads and soil of foundation. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
11.
Direct displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers 总被引:1,自引:0,他引:1
This paper presents a direct displacement-based design procedure for seismic retrofit of existing buildings using nonlinear
viscous dampers according to equivalent linear systems. Unlike conventional methods, the equivalent linear viscous damping
provided by the nonlinear viscous dampers is derived based on the assumption that the average energy dissipated between the
linear and the nonlinear viscous dampers is equal. Also, the equivalent period and viscous damping for the equivalent linear
systems which are used for representing the behavior of bare frames (the buildings without dampers) are derived from the concept
of average storage energy and average dissipated energy, respectively. It is shown from nonlinear time-history analyses that
the nonlinear action of the retrofitted structures can be reasonably captured by the presented direct displacement-based procedure. 相似文献
12.
地震现场建筑物安全性鉴定智能辅助系统应用软件开发 总被引:1,自引:1,他引:1
介绍了辅助决策系统的定义、用途与发展现状,从总体上阐述了构造地震现场建筑物安全性鉴定智能辅助系统(简称IASSAB)的意义与方法;介绍了IASSAB系统的开发策略与总体设计,讨论了系统的需求;给出了系统的功能层次结构,震损分析模块的机理,word报告自动生成实现方法,同时给出了具体的功能描述。 相似文献
13.
Nicolas Luco Yasuhiro Mori Yosuke Funahashi C. Allin Cornell Masayoshi Nakashima 《地震工程与结构动力学》2003,32(14):2267-2288
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
An improvement is first suggested to the modal pushover analysis (MPA) procedure for bridges initially proposed by the writers (Earthquake Engng Struct. Dyn. 2006; 35 (11):1269–1293), the key idea being that the deformed shape of the structure responding inelastically to the considered earthquake level is used in lieu of the elastic mode shape. The proposed MPA procedure is then verified by applying it to two actual bridges. The first structure is the Krystallopigi bridge, a 638 m‐long multi‐span bridge, with significant curvature in plan, unequal pier heights, and different types of pier‐to‐deck connections. The second structure is a 100 m‐long three‐span overpass bridge, typical in modern motorway construction in Europe, which, although ostensibly a regular structure, is found to exhibit a rather unsymmetric response in the transverse direction, mainly due to torsional irregularity. The bridges are assessed using response spectrum, ‘standard’ pushover (SPA), and MPA, and finally using non‐linear response history analysis (NL‐RHA) for a number of spectrum‐compatible motions. The MPA provided a good estimate of the maximum inelastic deck displacement for several earthquake intensities. The SPA on the other hand could not predict well the inelastic deck displacements of bridges wherever the contribution of the first mode to the response of the bridge was relatively low. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
15.
Experimental study on the bidirectional inelastic deformation capacity of U‐shaped steel dampers for seismic isolated buildings 下载免费PDF全文
Diana Ene Shoichi Kishiki Satoshi Yamada Yu Jiao Yoshinao Konishi Masao Terashima Norihisa Kawamura 《地震工程与结构动力学》2016,45(2):173-192
Hysteretic dampers are used to dissipate earthquake‐induced energy in base‐isolated structures by acquiring inelastic deformations, rendering their hysteretic behavior of vital importance. The present paper focuses on investigating the behavior of U‐shaped steel dampers under bidirectional loading; this is significantly different from their corresponding uniaxial behavior. Two main sets of loading tests on full‐scale specimens are conducted in this regard: (i) quasi‐static tests with simple histories and (ii) dynamic tests with realistic loading histories. Based on the results obtained in the quasi‐static tests, an interaction curve that accounts for the reduction of the cyclic deformation capacity is proposed. However, the fidelity of this relation must be assessed under loading conditions similar to those of a seismically isolated structure subjected to an earthquake, which represents the goal of the second set of tests. The results of the dynamic tests validate the proposed interaction curve for estimating the deformation capacity of U‐shaped steel dampers under bidirectional loading. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Brendon A. Bradley 《地震工程与结构动力学》2013,42(15):2235-2253
This paper compares the seismic demands obtained from an intensity‐based assessment, as conventionally considered in seismic design guidelines, with the seismic demand hazard. Intensity‐based assessments utilize the distribution of seismic demand from ground motions that have a specific value of some conditioning intensity measure, and the mean of this distribution is conventionally used in design verification. The seismic demand hazard provides the rate of exceedance of various seismic demand values and is obtained by integrating the distribution of seismic demand at multiple intensity levels with the seismic hazard curve. The seismic demand hazard is a more robust metric for quantifying seismic performance, because seismic demands from an intensity‐based assessment: (i) are not unique, with different values obtained using different conditioning intensity measures; and (ii) do not consider the possibility that demand values could be exceeded from different intensity ground motions. Empirical results, for a bridge‐foundation‐soil system, illustrate that the mean seismic demand from an intensity‐based assessment almost always underestimates the demand hazard value for the exceedance rate considered, on average by 17% and with a large variability. Furthermore, modification factors based on approximate theory are found to be unreliable. Adopting the maximum of the mean values from multiple intensity‐based assessments, with different conditional intensity measures, provides a less biased prediction of the seismic demand hazard value, but with still a large variability, and a proportional increase the required number of analyses. For an equivalent number of analyses, direct computation of the seismic demand hazard is a more logical choice and provides additional performance insight. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
Envelope‐based pushover analysis procedure for the approximate seismic response analysis of buildings 下载免费PDF全文
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
18.
In the presented practice‐oriented probabilistic approach for the seismic performance assessment of building structures, the SAC‐FEMA method, which is a part of the broader PEER probabilistic framework and permits probability assessment in closed form, is combined with the pushover‐based N2 method. The most demanding part of the PEER probabilistic framework, that is incremental dynamic analysis, is replaced by the much simpler N2 method, which requires considerably less input data and much less computational time, but which can, nevertheless, often provide: acceptable estimates for the mean values of the structural response. Using some additional simplifying assumptions that are consistent with seismic code procedures, an explicit equation for a quick estimation of the annual probability of “failure” (i.e. the probability of exceeding the near collapse limit state) of a structure can be derived, which is appropriate for practical applications, provided that predetermined default values for the dispersion measures are available. In the paper, this simplified approach is summarized and applied to the estimation of the “failure” probability of reinforced concrete frame buildings representing both old structures, not designed for earthquake resistance, and new structures designed according to Eurocode 8. The results of the analyses indicate a high probability of the “failure” of buildings, which have not been designed for seismic loads. For a building designed according to a modern code, the conservatively determined probability of “failure” is about 30 times less but still significant (about 1% over the lifetime of the structure). Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty 下载免费PDF全文
The current formulation of Eurocode 8 Part 3 and the Italian building code for the seismic assessment of existing buildings accounts for epistemic (knowledge‐based) uncertainties by means of the identification of knowledge levels with associated values of the so‐called confidence factors, applied only as a reduction of material strengths. This formulation does not always produce consistent results and it does not explicitly account for other sources of uncertainty. The paper proposes a probabilistic methodology for the quantification of appropriately defined factors, allowing consideration of the different sources of uncertainty involved in the seismic assessment of masonry buildings by means of nonlinear static analyses. This simple approach, also including an alternative formulation of the confidence factors related with material properties, allows to obtain results which are consistent with the acquired level of knowledge and correctly account for the different sources of uncertainty without requiring to carry out any stochastic nonlinear analysis. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
This paper aims to extend the consecutive modal pushover (CMP) procedure for estimating the seismic demands of two-way unsymmetric-plan tall buildings subjected to bi-directional seismic ground motions taking the effects of higher modes and torsion into account. Multi-stage and single-stage pushover analyses are carried out in both X and Y directions. Inelastic seismic responses obtained by multi-stage and single-stage pushover analyses for X and Y directions are combined using the SRSS combination scheme. The final seismic responses are determined by enveloping the combined results of multi-stage and single-stage pushover analyses. To evaluate the accuracy of the proposed procedure, it is applied to two-way unsymmetric-plan tall buildings which include torsionally stiff and torsionally flexible systems. The results derived from the CMP procedure are compared with those from nonlinear response history analysis (NL-RHA), as a benchmark solution. Moreover, the advantages of the proposed procedure are demonstrated by comparing the results derived from the CMP to those from pushover analysis with uniform and fundamental effective mode distributions. The proposed procedure is able to accurately predict amplification or de-amplification of the seismic displacements at the flexible and stiff edges of the two-way unsymmetric-plan tall buildings by considering the effects of higher modes and torsion. The extended CMP procedure can accurately estimate the peak inelastic responses, such as displacements and storey drifts. The CMP procedure features a higher potential in estimating plastic hinge rotations at both flexible and stiff sides of unsymmetric-plan tall buildings under bi-directional seismic excitation when compared to the uniform and fundamental effective mode force distributions. 相似文献