首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid simulation is a testing methodology that combines laboratory and analytical simulation to evaluate seismic response of complex structural framing systems. One or more portions of the structure, which may be difficult to model numerically or have properties that have not been examined before, are tested in one or more laboratories, whereas the remainder of the structure is modeled in software using one or more computers. These separate portions are assembled such that combined dynamic response of the hybrid model to excitation is computed using a time‐stepping procedure. A hybrid simulation conducted to examine the seismic response of a type of steel concentrically braced frame, the suspended‐zipper‐braced frame, is presented. The hybrid simulation testing architecture, hybrid model, test setup, solution algorithm, and the seismic response of the suspended‐zipper‐braced frame hybrid model are discussed. Accuracy of this hybrid simulation is examined by comparing hybrid and computer‐only simulations and the errors are quantified using an energy‐based approach. This comparison indicates that the deployed hybrid simulation method can be used to accurately model the seismic response of a complex structural system such as the zipper‐braced frame. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Eurocode 8 (EC8) stipulates design methods for frames with diagonal braces and for chevron braced frames, which differ as regards the numerical model adopted, the value of the behavior factor q and the estimation of the lateral strength provided by braces. Instead, in this paper, the use of the same design method is suggested for both types of concentrically braced frames. The design method is a generalization of the one proposed for chevron braced frames in a previous study. A numerical investigation is conducted to assess the reliability of this design method. A set of concentrically braced frames is designed according to the EC8 and proposed design methods. The seismic response of these frames is determined by nonlinear dynamic analysis. Finally, it is demonstrated that the proposed design method is equivalent to those provided by EC8, because it can ensure the same level of structural safety which would be expected when using EC8. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   

4.
The paper is concerned with the seismic design of steel‐braced frames in which the braces are configured in a chevron pattern. According to EuroCode 8 (EC8), the behaviour factor q, which allows for the trade‐off between the strength and ductility, is set at 2.5 for chevron‐braced frames, while 6.5 is assigned for most ductile steel moment‐resisting frames. Strength deterioration in post‐buckling regime varies with the brace's slenderness, but EC8 adopts a unique q value irrespective of the brace slenderness. The study focuses on reevaluation of the q value adequate for the seismic design of chevron‐braced frames. The present EC8 method for the calculation of brace strength supplies significantly different elastic stiffnesses and actual strengths for different values of brace slenderness. A new method to estimate the strength of a chevron brace pair is proposed, in which the yield strength (for the brace in tension) and the post‐buckling strength (for the brace in compression) are considered. The new method ensures an identical elastic stiffness and a similar strength regardless of the brace slenderness. The advantage of the proposed method over the conventional EC8 method is demonstrated for the capacity of the proposed method to control the maximum inter‐storey drift. The q values adequate for the chevron‐braced frames are examined in reference to the maximum inter‐storey drifts sustained by most ductile moment‐resisting frames. When the proposed method is employed for strength calculation, the q value of 3.5 is found to be reasonable. It is notable that the proposed method does not require larger cross‐sections for the braces compared to the cross‐sections required for the present EC8 method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Special concentrically braced frames (SCBFs) are considered as one of the most economical and effective lateral force‐resisting systems in structures located in the regions of high seismicity. Steel braces in a braced frame undergo large axial deformations in tension and compression to dissipate the seismic energy. However, past studies have shown that SCBFs exhibit the soft‐story hinge mechanisms and unpredictable failure patterns under earthquake loading conditions. These inelastic responses along with the use of continuous structural sections as columns over consecutive floors induce flexural demand that is not considered in the current design practice. In this study, the evaluation of seismic performance of nine SCBFs designed as per the current practice has been carried out for three different story heights (i.e., three‐story, six‐story, and nine‐story) and three types of brace configurations (namely, chevron, split X, and single X). Three additional design techniques are also explored based on (i) the inclusion of column moments in the design; (ii) the theory of formation of plastic hinges; and (iii) the design of braces considering the forces computed at their post‐buckled stages. Nonlinear dynamic analyses of these study frames have been evaluated numerically using a computer software Perform‐3D for a suite of 40 ground motions representing the design basis earthquake and maximum considered earthquake hazard levels. Analyses results showed that the SCBFs designed as per the modified procedures achieved the desired performance objectives without the formation of soft‐story mechanism. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Building period formulas in seismic design code are evaluated with over 800 apparent building periods from 191 building stations and 67 earthquake events. The evaluation is carried out with the formulas in ASCE 7‐05 for steel and RC moment‐resisting frames, shear wall buildings, braced frames, and other structural types. Qualitative comparison of measured periods and periods calculated from the code formulas shows that the formula for steel moment‐resisting frames generally predicts well the lower bound of the measured periods for all building heights. But the differences between the periods from code formula and measured periods of low‐ to‐medium rise buildings are relatively high. In addition, the periods of essential buildings designed with the importance factor are about 40% shorter than the periods of non‐essential buildings. The code formula for RC moment‐resisting frames describes well the lower bound of measured periods. The formula for braced frames accurately predicts the lower bound periods of low‐to‐medium rise buildings. The formula for shear wall buildings overestimates periods for all building heights. For buildings that are classified as other structural types, the measured building periods can be much shorter than the periods calculated with the code formula. Based on these observations, it is suggested to use Cr factor of 0.015 for shear walls and other structural types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Controlled rocking steel braced frames (CRSBFs) have been proposed as a low‐damage seismic force resisting system with reliable self‐centring capabilities. Vertical post‐tensioning tendons are designed to self‐centre the system after rocking, and energy dissipation may be provided to limit the peak displacements. The post‐tensioning and energy dissipation can be designed using simple methods that rely primarily on the first‐mode response. However, the frame member forces are highly influenced by the higher‐mode response, resulting in more complex methods to design the frame members. This paper examines previous proposals and also proposes two new capacity design methods for CRSBFs. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static method that does not require any modifications to the elastic frame model, instead using theory‐based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration. The dynamic procedure is used to design two sets of CRSBFs with three, six, nine, twelve and eighteen stories, one set using a response modification factor of R = 8 and the other using up to R = 20. Based on the results of 800 nonlinear time history analyses, both methods are generally more accurate than the previous capacity design methods and at least as simple to implement. Finally, the displacement results suggest that taller CRSBFs designed using could still limit interstorey drifts to approximately 2.5% at the maximum considered earthquake level in the cases considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Buckling restrained braces (BRBs) are very effective in dissipating energy through stable tension–compression hysteretic cycles and have been successfully experimented in the seismic protection of buildings. Their behavior has been studied extensively in the last decades and today the level of performance guaranteed by these devices and the technological constrains that have to be fulfilled to optimize their behavior are well known. Furthermore, several companies in the world have developed their own BRBs and are now producing them. In spite of this, many seismic codes (for instance, the EuroCode 8) do not stipulate provisions for the design and construction of earthquake‐resistant structures equipped with BRBs. This discourages the structural engineering community from using these devices and seriously limits their use in structural applications. In this paper a procedure for the seismic design of steel frames equipped with BRBs is proposed. Furthermore, the paper presents a numerical investigation aimed at validating this design procedure and proposing the value of the behavior factor q that should be used for this structural type. To this end, a set of frames with BRBs is first designed by means of several values of q. Then, the obtained frames are subjected to a set of accelerograms compatible with the elastic response spectrum considered in design. The seismic response of the frames is determined by nonlinear dynamic analysis and represented in terms of the ductility demand of BRBs and the internal force demand of nondissipative members (beams and columns). Finally, the largest value of q that leads to acceptable seismic performance of the analyzed frames is assumed as adequate. The value of q is given in the paper as a continuous function of the assumed ductility capacity of the BRBs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

10.
An analytical and experimental study has been conducted to evaluate the seismic performance of a three‐story suspended zipper steel frame. The frame was concentrically braced and had zipper struts to transfer the unbalanced forces induced on the beams due to the buckling of the lower‐story braces. The experimental study was conducted with the hybrid test technique, in which only the bottom‐story braces of the three‐story frame were physically tested, while the behavior of the rest of the frame was modeled using a general structural analysis software. The paper discusses issues pertinent to the calibration of the computer model for the analytical substructure as well as for the entire frame, including the selection of an appropriate damping matrix, and the modeling of the buckling behavior of the braces and bracing connections. The analytical model of the entire frame was validated with the hybrid tests and was able to accurately capture the material and geometric nonlinearities that developed when the braces yielded and buckled. This study has demonstrated the usefulness of hybrid testing in improving analytical models and modeling assumptions and providing information that cannot be obtained from an analytical study alone. The results have shown that the suspended zipper frame can distribute the brace nonlinearity over the first two stories as intended in the design and will not have catastrophic failure under the design‐level earthquakes considered in this study, despite the significant inelastic deformations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A new earthquake resistant structural system for multi‐storey frame structures, based on a dual function of its bracing components, is developed. This consists of a hysteretic damper device and a cross‐bracing mechanism with a kinetic closed circuit, working only in tension, so that cable members can be used for this purpose. Solutions are presented regarding the connections' design of three types of structural frame system, that are concerned throughout the study: braced moment free frame, braced moment resisting frame with moment free supports, and with moment resisting supports. The dynamic behaviour of the system is investigated on the basis of an SDOF model, and based on the response spectra method an approximate design approach of the controlled structures is shown. From the time history analysis of the structural systems for the El Centro earthquake the areas of appropriate stiffness relations of the frames to the hysteretic dampers and the cable braces are deduced, so that the energy dissipation of the system may be controlled by the damper‐cable bracing mechanism. Based on the results of these studies, a predesign approach is developed for the implementation of the control system in frame structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The paper deals with the analysis of the seismic behaviour and design of tied braced frames (TBFs). The behavioural properties of TBFs are described and a comparison drawn with standard eccentrically braced frames. A design procedure is then proposed that aims to achieve optimal collapse seismic behaviour, i.e. a global collapse mechanism characterized by uniform plastic rotations of links. The procedure is based on the displacement‐based approach so as to achieve direct and efficient control of the peak ground acceleration of collapse. Applications are carried out on systems with different numbers of storeys and lengths of links to obtain confirmation of the accuracy of the design hypotheses and methodologies. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper the theory of plastic mechanism control is presented for moment resisting frame–concentrically braced frames dual systems, i.e. for structural systems combined by moment resisting frames and concentrically braced frames. It is aimed at the design of structures failing in global mode, i.e. whose collapse mechanism is characterised by the yielding of all the tensile diagonals and the occurrence of buckling in the compressed ones, and by plastic hinge formation at all the beam ends and at the base of first storey columns. The proposed methodology is based on the application of the kinematic theorem of plastic collapse, by imposing that the global mechanism equilibrium curve has to lie below all the other equilibrium curves corresponding to undesired mechanisms. The practical application of the design methodology is illustrated by means of a worked example. In addition, the results of a non-linear static pushover and dynamic analyses of the designed structure are also discussed in order to demonstrate the effectiveness of the proposed design procedure.  相似文献   

14.
耗能梁段作为偏心支撑结构的耗能元件,在大震作用下通过弹塑性变形吸收地震能量,保护主体结构处于弹性受力状态。现行规范基于强度的设计理论,为了保证耗能梁段进入塑性或破坏,梁柱构件需要进行放大内力设计,导致截面过大,而且基于强度的设计方法很难保证结构的整体破坏状态。目前,抗震设计越来越重视基于性能的设计思想,该方法能够评估结构的弹塑性反应。对于高强钢组合偏心支撑,其中耗能梁段和支撑采用Q345钢,框架梁柱采用Q460或者Q690高强度钢材,高强钢不仅带来良好的经济效益,而且能够推广高强钢在抗震设防区的应用。利用基于性能设计方法设计了4种不同形式的高强钢组合偏心支撑钢框架,包括K形、Y形、V形和D形,考虑4层、8层、12层和16层的影响。通过Pushover分析和非线性时程分析评估该结构的抗震性能,研究结果表明:4种形式的高强钢组合偏心支撑钢框架具有类似的抗震性能,在罕遇地震作用下,几乎所有耗能梁段均参与耗能,而且层间侧移与耗能梁段转角沿高度分布较为均匀。其中:D形偏心支撑具有最大的抗侧刚度,但延性较差,而Y形偏心支撑的抗侧刚度最弱,但延性最佳。  相似文献   

15.
A procedure for treating the P– Δ effect in the direct displacement‐based seismic design of regular steel moment resisting frames with ideal elastoplastic material behaviour is proposed. A simple formula for the yield displacement amplification factor as a function of ductility and the stability coefficient is derived on the basis of the seismic response of an inelastic single degree‐of‐freedom system taking into account the P– Δ effect. Extensive parametric seismic inelastic analyses of plane moment resisting steel frames result in a simple formula for the dynamic stability coefficient as a function of the number of stories of a frame and the column to beam stiffness ratio. Thus, the P– Δ effect can be easily taken into account in a direct displacement‐based seismic design through the stability coefficient and the yield displacement amplification factor. A simple design example serves to illustrate the application of the proposed method and demonstrate its merits. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R=8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R>8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R>8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Quasi-static testing is one of the most commonly used experimental methods for examining the seismic performance of structural members. However, consistent loading protocols for experimental seismic qualification of members in emerging steel frames such as self-centering braced frames (SCBFs) as well as in some conventional ones including buckling-restrained braced frames (BRBFs) are still lacking. This paper aims to propose standardized loading protocols based on time-history dynamic analysis on a series of prototype building frames, including steel SCBFs, BRBFs, and moment-resisting frames (MRFs), where both far-field and near-fault earthquakes are considered. The methodology for the development of the loading protocols involves ground motion selection and scaling, design and analysis of prototype buildings, analysis results processing, and rainflow cycle counting, together with extra justification steps. The proposed loading protocols are consistently derived based on the MCE-level seismic hazard and 84th percentile values of key seismic demand parameters. These parameters are number of damaging cycles Nt, maximum inter-story drift θmax, inter-story drift range Δθi, sum of inter-story drift range ΣΔθi, and residual inter-story drift θr. The analysis confirms the variations in these seismic demands imposed on the different structural systems under different types of ground motions, highlighting the necessity of developing separate loading protocols for the different cases. The assumptions, decisions, and judgments made during the development of the loading protocols are elaborated, and the conditions and restrictions are outlined. The rationality of the proposed loading protocols is further justified through demonstrating the cumulative distribution function and energy dissipation demand of the systems.  相似文献   

19.
According to the most modern trend, performance‐based seismic design is aimed at the evaluation of the seismic structural reliability defined as the mean annual frequency (MAF) of exceeding a threshold level of damage, i.e. a limit state. The methodology for the evaluation of the MAF of exceeding a limit state is herein applied with reference to concentrically ‘V’‐braced steel frames designed according to different criteria. In particular, two design approaches are examined. The first approach corresponds to the provisions suggested by Eurocode 8 (prEN 1998—Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings), while the second approach is based on a rigorous application of capacity design criteria aiming at the control of the failure mode (J. Earthquake Eng. 2008; 12 :1246–1266; J. Earthquake Eng. 2008; 12 :728–759). The aim of the presented work is to focus on the seismic reliability obtained through these design methodologies. The probabilistic performance evaluation is based on an appropriate combination of probabilistic seismic hazard analysis, probabilistic seismic demand analysis (PSDA) and probabilistic seismic capacity analysis. Regarding PSDA, nonlinear dynamic analyses have been carried out in order to obtain the parameters describing the probability distribution laws of demand, conditioned to given values of the earthquake intensity measure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, the torsional response of buildings with peripheral steel‐braced frame lateral systems is evaluated. A three‐dimensional model of a three story braced frame with various levels of eccentricity is created and the effects of torsion on the seismic response is assessed for four hazard levels. The response history analysis results indicate that, unlike frame structures, the torsional amplifications in the inelastic systems exceed those of corresponding elastic systems and tend to increase with an increase in the level of inelasticity. The ability of two simplified procedures, elastic response spectrum analysis and pushover analysis, to capture the torsional amplifications in steel‐braced frames is evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号