首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last decade of performance‐based earthquake engineering (PBEE) research has seen a rapidly increasing emphasis placed on the explicit quantification of uncertainties. This paper examines uncertainty consideration in input ground‐motion and numerical seismic response analyses as part of PBEE, with particular attention given to the physical consistency and completeness of uncertainty consideration. It is argued that the use of the commonly adopted incremental dynamic analysis leads to a biased representation of the seismic intensity and that when considering the number of ground motions to be used in seismic response analyses, attention should be given to both reducing parameter estimation uncertainty and also limiting ground‐motion selection bias. Research into uncertainties in system‐specific numerical seismic response analysis models to date has been largely restricted to the consideration of ‘low‐level’ constitutive model parameter uncertainties. However, ‘high‐level’ constitutive model and model methodology uncertainties are likely significant and therefore represent a key research area in the coming years. It is also argued that the common omission of high‐level seismic response analysis modelling uncertainties leads to a fallacy that ground‐motion uncertainty is more significant than numerical modelling uncertainty. The author's opinion of the role of uncertainty analysis in PBEE is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Analysis of civil structures at the scale of life‐cycle requires stochastic modeling of degradation. Phenomena causing structures to degrade are typically categorized as aging and point‐in‐time overloads. Earthquake effects are the members of the latter category this study deals with in the framework of performance‐based earthquake engineering (PBEE). The focus is structural seismic reliability, which requires modeling of the stochastic process describing damage progression, because of subsequent events, over time. The presented study explicitly addresses this issue via a Markov‐chain‐based approach, which is able to account for the change in seismic response of damaged structures (i.e. state‐dependent seismic fragility) as well as uncertainty in occurrence and intensity of earthquakes (i.e. seismic hazard). The state‐dependent vulnerability issue arises when the seismic hysteretic response is evolutionary and/or when the damage measure employed is such that the degradation increment probabilistically depends on the conditions of the structure at the time of the shock. The framework set up takes advantage also of the hypotheses of classical probabilistic seismic hazard analysis, allowing to separate the modeling of the process of occurrence of seismic shocks and the effect they produce on the structure. It is also discussed how the reliability assessment, which is in closed‐form, may be virtually extended to describe a generic age‐ and state‐dependent degradation process (e.g. including aging and/or when aftershock risk is of interest). Illustrative applications show the options to calibrate the model and its potential in the context of PBEE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A comprehensive framework for potential failure modes (PFM) identification and quantification of concrete dams subjected to seismic excitation is presented. A quantifiable indicator of PFM is presented in the context of both linear and nonlinear analyses. As an illustrative example, a thin arch dam subjected to a set of ground motions at different seismic intensity levels is investigated and corresponding PFM quantified. An outcome of this analysis is the probabilistic‐based correlation between linear and nonlinear analyses and identification of the optimal intensity measure parameter. This study, is an adaptation and extension of well‐accepted procedures defined by the performance‐based earthquake engineering paradigm in buildings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Incremental dynamic analysis (IDA) is presented as a powerful tool to evaluate the variability in the seismic demand and capacity of non‐deterministic structural models, building upon existing methodologies of Monte Carlo simulation and approximate moment‐estimation. A nine‐story steel moment‐resisting frame is used as a testbed, employing parameterized moment‐rotation relationships with non‐deterministic quadrilinear backbones for the beam plastic‐hinges. The uncertain properties of the backbones include the yield moment, the post‐yield hardening ratio, the end‐of‐hardening rotation, the slope of the descending branch, the residual moment capacity and the ultimate rotation reached. IDA is employed to accurately assess the seismic performance of the model for any combination of the parameters by performing multiple nonlinear timehistory analyses for a suite of ground motion records. Sensitivity analyses on both the IDA and the static pushover level reveal the yield moment and the two rotational‐ductility parameters to be the most influential for the frame behavior. To propagate the parametric uncertainty to the actual seismic performance we employ (a) Monte Carlo simulation with latin hypercube sampling, (b) point‐estimate and (c) first‐order second‐moment techniques, thus offering competing methods that represent different compromises between speed and accuracy. The final results provide firm ground for challenging current assumptions in seismic guidelines on using a median‐parameter model to estimate the median seismic performance and employing the well‐known square‐root‐sum‐of‐squares rule to combine aleatory randomness and epistemic uncertainty. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Fast performance uncertainty estimation via pushover and approximate IDA   总被引:1,自引:0,他引:1  
Approximate methods based on the static pushover are introduced to estimate the seismic performance uncertainty of structures having non‐deterministic modeling parameters. At their basis lies the use of static pushover analysis to approximate Incremental Dynamic Analysis (IDA) and estimate the demand and capacity epistemic uncertainty. As a testbed we use a nine‐storey steel frame having beam hinges with uncertain moment–rotation relationships. Their properties are fully described by six, randomly distributed, parameters. Using Monte Carlo simulation with Latin hypercube sampling, a characteristic ensemble of structures is created. The Static Pushover to IDA (SPO2IDA) software is used to approximate the IDA capacity curve from the appropriately post‐processed results of the static pushover. The approximate IDAs allow the evaluation of the seismic demand and capacity for the full range of limit‐states, even close to global dynamic instability. Moment‐estimating techniques such as Rosenblueth's point estimating method and the first‐order, second‐moment (FOSM) method are adopted as simple alternatives to obtain performance statistics with only a few simulations. The pushover is shown to be a tool that combined with SPO2IDA and moment‐estimating techniques can supply the uncertainty in the seismic performance of first‐mode‐dominated buildings for the full range of limit‐states, thus replacing semi‐empirical or code‐tabulated values (e.g. FEMA‐350), often adopted in performance‐based earthquake engineering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Bridges are crucial to the transportation network in a region struck by an earthquake. Collapse of a bridge determines if a road is passable. Ability of a bridge to carry traffic load after an earthquake determines the weight and speed of vehicles that can cross it. Extent of system and component structural damage in bridges determines the cost and time required for repair. Today, post‐earthquake bridge evaluation is qualitative rather than quantitative. The research presented in this paper aims to provide a quantitative engineering basis for quick and reliable evaluation of the ability of a typical highway overpass bridge to function after an earthquake. The Pacific Earthquake Engineering Research (PEER) Center's probabilistic performance‐based evaluation approach provides the framework for post‐earthquake bridge evaluation. An analytical study was performed that linked engineering demand parameters to earthquake intensity measures. The PEER structural performance database and reliability analysis tools were then used to link demand parameters to damage measures. Finally, decision variables were developed to describe three limit states, repair cost, traffic function, and collapse, in terms of induced damage. This paper presents the analytical models used to evaluate post‐earthquake bridge function, decision variables and their correlation to the considered limit states, and fragility curves that represent the probability of exceeding a bridge function limit state given an earthquake intensity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, two new site specific statistical equations are proposed to estimate the inelastic displacement ratio, C1 of structures subjected to far fault (FF) and near fault (NF) ground motions. The proposed equations consider the effects of fundamental vibration period of the structure, T, lateral strength ratio, R and frequency content of the design earthquake record represented by the Ap/Vp ratio (or T0 = 2π/Ap/Vp), which is a function of the earthquake magnitude, distance to fault, faulting mechanism and site class. It was observed that the C1 values obtained from the proposed equations are in good agreement with the calculated results. The flare of the plotted C1 vs. T/T0 curves enables the proposed equations to cover nearly all the calculated C1 data range and give satisfactory results. However, the curves obtained using the C1 equations of several codes and those available in the literature do not cover the whole calculated C1 data range and generally give unconservative results (smaller C1 values) especially in the shorter period range. For the longer period range, the predictions of C1 obtained from the proposed equation and the ones available in the literature are in good agreement with the calculated C1 data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In a related study developed by the authors, building fragility is represented by intensity‐specific distributions of damage exceedance probability of various damage states. The contribution of the latter has been demonstrated in the context of loss estimation of building portfolios, where it is shown that the proposed concept of conditional fragility functions provides the link between seismic intensity and the uncertainty in damage exceedance probabilities. In the present study, this methodology is extended to the definition of building vulnerability, whereby vulnerability functions are characterized by hazard‐consistent distributions of damage ratio per level of primary seismic intensity parameter—Sa(T1). The latter is further included in a loss assessment framework, in which the impact of variability and spatial correlation of damage ratio in the probabilistic evaluation of seismic loss is accounted for, using test‐bed portfolios of 2, 5, and 8‐story precode reinforced concrete buildings located in the district of Lisbon, Portugal. This methodology is evaluated in comparison with current state‐of‐the‐art methods of vulnerability and loss calculation, highlighting the discrepancies that can arise in loss estimates when the variability and spatial distributions of damage ratio, influenced by ground motion properties other than the considered primary intensity measure, are not taken into account.  相似文献   

10.
Practical methods for the probability‐based seismic assessment of structures make use of estimates of demands produced by earthquakes of different intensities. The uncertainties associated with these estimates are highly dependent on the variable adopted as the intensity measure (IM, e.g., PGA, spectral acceleration, etc.). This generates the need to compare the efficiency of an originally adopted IMwith that of a new candidate. This implies comparing the dispersion of the demand measure (DM, e.g., maximum interstorey drift ratio, ductility demand, etc.) conditional to each of the two IMs. In order to obtain the demand estimates in a conventional way, a full set of dynamic response analyses should be performed for each IM under scrutiny, i.e., multiple records scaled at several fixed values of each IM. The procedure developed here serves to accelerate this comparison avoiding the effort required to evaluate the dynamic responses of the structure for all the ground motion time histories considered every time that a new IM is adopted. For this purpose, use is made of available results of analyses performed for a different (i.e., the original) IM. Two methods are proposed: the direct method involves performing a regression of the results obtained from the original analyses, taking the candidate IM as the independent variable. The indirect method involves rebuilding the probability density function of the DM given a defined value of the candidate IM by means of the total probability theorem, using the results of the original analyses and certain data relating the two IMs. The proposed methods have been tested by application to several SDOF systems with different periods and different cyclic‐response backbone curves. The conditions affecting their approximation are explored, and some criteria to improve them are identified. The procedure can also be used to determine the optimum value of a parameter to be used in a parameter‐based IM. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Alternative non‐linear dynamic analysis procedures, using real ground motion records, can be used to make probability‐based seismic assessments. These procedures can be used both to obtain parameter estimates for specific probabilistic assessment criteria such as demand and capacity factored design and also to make direct probabilistic performance assessments using numerical methods. Multiple‐stripe analysis is a non‐linear dynamic analysis method that can be used for performance‐based assessments for a wide range of ground motion intensities and multiple performance objectives from onset of damage through global collapse. Alternatively, the amount of analysis effort needed in the performance assessments can be reduced by performing the structural analyses and estimating the main parameters in the region of ground motion intensity levels of interest. In particular, single‐stripe and double‐stripe analysis can provide local probabilistic demand assessments using minimal number of structural analyses (around 20 to 40). As a case study, the displacement‐based seismic performance of an older reinforced concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake, is evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
SPO2IDA is introduced, a software tool that is capable of recreating the seismic behaviour of oscillators with complex quadrilinear backbones. It provides a direct connection between the static pushover (SPO) curve and the results of incremental dynamic analysis (IDA), a computer‐intensive procedure that offers thorough demand and capacity prediction capability by using a series of nonlinear dynamic analyses under a suitably scaled suite of ground motion records. To achieve this, the seismic behaviour of numerous single‐degree‐of‐freedom (SDOF) systems is investigated through IDA. The oscillators have a wide range of periods and feature pinching hysteresis with backbones ranging from simple bilinear to complex quadrilinear with an elastic, a hardening and a negative‐stiffness segment plus a final residual plateau that terminates with a drop to zero strength. An efficient method is introduced to treat the backbone shape by summarizing the analysis results into the 16, 50 and 84% fractile IDA curves, reducing them to a few shape parameters and finding simpler backbones that reproduce the IDA curves of complex ones. Thus, vast economies are realized while important intuition is gained on the role of the backbone shape to the seismic performance. The final product is SPO2IDA, an accurate, spreadsheet‐level tool for performance‐based earthquake engineering that can rapidly estimate demands and limit‐state capacities, strength reduction R‐factors and inelastic displacement ratios for any SDOF system with such a quadrilinear SPO curve. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
While structural engineers have traditionally focused on individual components (bridges, for example) of transportation networks for design, retrofit, and analysis, it has become increasingly apparent that the economic costs to society after extreme earthquake events are caused at least as much from indirect costs as direct costs due to individual structures. This paper describes an improved methodology for developing probabilistic estimates of repair costs and repair times that can be used for evaluating the performance of new bridge design options and existing bridges in preparation for the next major earthquake. The proposed approach in this paper is an improvement on previous bridge loss modeling studies—it is based on the local linearization of the dependence between repair quantities and damage states so that the resulting model follows a linear relationship between damage states and repair points. The methodology uses the concept of performance groups (PGs) that account for damage and repair of individual bridge components and subassemblies. The method is validated using two simple examples that compare the proposed method to simulation and previous methods based on loss models using a power–law relationship between repair quantities and damage. In addition, an illustration of the method is provided for a complete study on the performance of a common five‐span overpass bridge structure in California. Intensity‐dependent repair cost ratios (RCRs) and repair times are calculated using the proposed approach, as well as plots that show the disaggregation of repair cost by repair quantity and by PG. This provides the decision maker with a higher fidelity of data when evaluating the contribution of different bridge components to the performance of the bridge system, where performance is evaluated in terms of repair costs and repair times rather than traditional engineering quantities such as displacements and stresses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
With the increasing emphasis of performance‐based earthquake engineering in the engineering community, several investigations have been presented outlining simplified approaches suitable for performance‐based seismic design (PBSD). Central to most of these PBSD approaches is the use of closed‐form analytical solutions to the probabilistic integral equations representing the rate of exceedance of key performance measures. Situations where such closed‐form solutions are not appropriate primarily relate to the problem of extrapolation outside of the region in which parameters of the closed‐form solution are fit. This study presents a critical review of the closed‐form solution for the annual rate of structural collapse. The closed‐form solution requires the assumptions of lognormality of the collapse fragility and power model form of the ground motion hazard, of which the latter is more significant regarding the error of the closed‐form solution. Via a parametric study, the key variables contributing to the error between the closed‐form solution and solution via numerical integration are illustrated. As these key variables cannot be easily measured, it casts doubt on the use of such closed‐form solutions in future PBSD, especially considering the simple and efficient nature of using direct numerical integration to obtain the solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

16.
The paper aims at evaluating the influence of damper properties on the probabilistic seismic response of structural systems equipped with nonlinear viscous dampers. For this purpose, a linear single‐degree‐of‐freedom system with an added linear or nonlinear viscous damper is considered, and the response statistics are evaluated for a set of natural records describing the ground motion uncertainty. A dimensional analysis of the seismic problem is carried out first to identify the minimum set of characteristic parameters describing the system and controlling the seismic response. An extensive parametric study is then performed to estimate the influence of the damper properties on the statistics of the main response quantities of interest (i.e. maximum displacements, accelerations and damper forces), for a wide range of values of the characteristic parameters. Finally, a set of case studies is investigated to show some interesting issues concerning the influence of the damper nonlinear behaviour on the evaluation of the system reliability and to highlight some limitations of current deterministic approaches neglecting the probabilistic properties of the response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A probabilistic representation of the entire ground‐motion time history can be constructed based on a stochastic model that depends on seismic source parameters. An advanced stochastic simulation scheme known as Subset Simulation can then be used to efficiently compute the small failure probabilities corresponding to structural limit states. Alternatively, the uncertainty in the ground motion can be represented by adopting a parameter (or a vector of parameters) known as the intensity measure (IM) that captures the dominant features of the ground shaking. Structural performance assessment based on this representation can be broken down into two parts, namely, the structure‐specific part requiring performance assessment for a given value of the IM, and the site‐specific part requiring estimation of the likelihood that ground shaking with a given value of the IM takes place. The effect of these two alternative representations of ground‐motion uncertainty on probabilistic structural response is investigated for two hazard cases. In the first case, these two approaches are compared for a scenario earthquake event with a given magnitude and distance. In the second case, they are compared using a probabilistic seismic hazard analysis to take into account the potential of the surrounding faults to produce events with a range of possible magnitudes and distances. The two approaches are compared on the basis of the probabilistic response of an existing reinforced‐concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake in Los Angeles, California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A performance‐based earthquake engineering approach is developed for the seismic risk assessment of fixed‐roof atmospheric steel liquid storage tanks. The proposed method is based on a surrogate single‐mass model that consists of elastic beam‐column elements and nonlinear springs. Appropriate component and system‐level damage states are defined, following the identification of commonly observed modes of failure that may occur during an earthquake. Incremental dynamic analysis and simplified cloud are offered as potential approaches to derive the distribution of response parameters given the seismic intensity. A parametric investigation that engages the aforementioned analysis methods is conducted on 3 tanks of varying geometry, considering both anchored and unanchored support conditions. Special attention is paid to the elephant's foot buckling formation, by offering extensive information on its capacity and demand representation within the seismic risk assessment process. Seismic fragility curves are initially extracted for the component‐level damage states, to compare the effect of each analysis approach on the estimated performance. The subsequent generation of system‐level fragility curves reveals the issue of nonsequential damage states, whereby significant damage may abruptly appear without precursory lighter damage states.  相似文献   

19.
Assessing the probability of collapse is a computationally demanding component of performance‐based earthquake engineering. This paper examines various aspects involved in the computation of the mean annual frequency of collapse (λc) and proposes an efficient method for estimating the sidesway collapse risk of structures in seismic regions. By deaggregating the mean annual frequency of collapse, it is shown that the mean annual frequency of collapse is typically dominated by earthquake ground motion intensities corresponding to the lower half of the collapse fragility curve. Uncertainty in the collapse fragility curve and mean annual frequency of collapse as a function of the number of ground motions used in calculations is also quantified, and it is shown that using a small number of ground motions can lead to unreliable estimates of a structure's collapse risk. The proposed method is shown to significantly reduce the computational effort and uncertainty in the estimate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An improved seismic hazard model for use in performance‐based earthquake engineering is presented. The model is an improved approximation from the so‐called ‘power law’ model, which is linear in log–log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these ‘exact’ hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance‐based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi‐analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi‐analytical closed form solution is shown to be significantly more accurate than the analytical closed‐form solution using the power law hazard model, capturing the ‘exact’ numerical integration solution to within 7% accuracy over the entire range of exceedance rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号