首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
It is highlighted in the past that the soil–structure interaction phenomenon can produce a significant alteration on the response of a bridge structure. A variety of approaches has been developed in the past, which is capable of tackling the soil–structure interaction problem from different perspectives. The popular approach of a discretized truncated finite element model of the soil domain is not always a numerically viable solution, especially for computationally demanding simulations such as the probabilistic fragility analysis of a bridge structure or the real time hybrid simulation. This paper aims to develop a complete modeling procedure that is capable of coping with the soil–structure interaction problem of inelastic bridge structures through the use of a frequency dependent lumped parameter assembly. The proposed procedure encounters accuracy and global stability issues observed on past methods while maintaining the broad applicability of the method by any commercial FEM software. A case study of an overpass bridge structure under earthquake excitations is illustrated in order to verify the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   

3.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, it is intended to determine the effects of soil–structure interaction (SSI) and spatially varying ground motion on the dynamic characteristics of cable-stayed bridges. For this purpose, ground motion time histories are simulated for spatially varying ground motions, depending on its components of incoherence, wave-passage and site-response effects. The substructure method, which partitions the total soil–structure system into the structural system and the soil system, is used to treat the soil–structure interaction problem. To emphasize the relative importance of the spatial variability effects of earthquake ground motion, bridge responses are determined for the fixed base bridge model, which neglects the soil–structure interaction (no SSI) and for the bridge model including the soil–structure interaction (SSI). This parametric study concerning the relative importance of the soil–structure interaction and spatially varying ground motion shows that these effects should be considered in the dynamic analyses of cable-stayed bridges.  相似文献   

5.
Seismic performance and dynamic response of bridge–embankments during strong or moderate ground excitations are investigated through finite element (FE) modelling and detailed dynamic analysis. Previous research studies have established that bridge–embankments exhibit increasingly flexible performance under high‐shear deformation levels and that soil displacements at bridge abutment supports may be significant particularly in the transverse direction. The 2D equation of motion is solved for the embankment, in order to evaluate the dynamic characteristics and to describe explicitly the seismic performance and dynamic response under transverse excitations accounting for soil nonlinearities, soil–structure interaction and imposed boundary conditions (BCs). Using the proposed model, equivalent elastic analysis was performed so as to evaluate the dynamic response of approach embankments while accounting for soil–structure interaction. The analytical procedures were applied in the case of a well‐documented bridge with monolithic supports (Painter Street Overcrossing, PSO) which had been instrumented and embankment participation was identified from its response records after the 1971 San Fernando earthquake. The dynamic characteristics and dynamic response of the PSO embankments were evaluated for alternative BCs accounting for soil–structure interaction. Explicit expressions for the evaluation of the critical embankment length Lc are provided in order to quantify soil contribution to the overall bridge system under strong intensity ground excitations. The dynamic response of the entire bridge system (deck–abutments–embankments) was also evaluated through simplified models that considered soil–structure interaction. Results obtained from this analysis are correlated with those of detailed 3D FE models and field data with good agreement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A three-dimensional backfill–structure–soil/foundation interaction phenomenon is simulated using the finite element method in order to analyze the dynamic behavior of cantilever retaining wall subjected to different ground motions. Effects of both earthquake frequency content and soil–structure interaction are evaluated by using five different seismic motions and six different soil types. The study mainly consists of three parts. In the first part, following a brief review of the problem, the finite element model with viscous boundary is proposed under fixed-base condition. In the second part, analytical formulations are presented by using modal analysis technique to provide the finite element model verification, and reasonable agreement is found between numerical and analytical results. Finally, the method is extended to further investigate parametrically the effects of not only earthquake frequency content but also soil/foundation interaction, and nonlinear time history analyzes are carried out. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses under different ground motions. It is concluded that the dynamic response of the cantilever wall is highly sensitive to frequency characteristics of the earthquake record and soil–structure interaction.  相似文献   

8.
This paper presents an input and system identification technique for a soil–structure interaction system using earthquake response data. Identification is carried out on the Hualien large‐scale seismic test structure, which was built in Taiwan for international joint research. The identified quantities are the input ground acceleration as well as the shear wave velocities of the near‐field soil regions and Young's moduli of the shell sections of the structure. The earthquake response analysis on the soil–structure interaction system is carried out using the finite element method incorporating the infinite element formulation for the unbounded layered soil medium and the substructured wave input technique. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the earthquake responses measured at several points of the structure, so that the information on the input motion may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated earthquake responses using the identified parameters and input ground motion show excellent agreement with the measured responses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a wide parametric study aimed at elucidating the influence, on the computed seismic response of bridge piers, of two related aspects of the model: (1) the adoption of the classical hysteretic or the causal Biot's damping models for the soil and (2) the use of two different lumped parameter models of different complexity and accuracy to approximate the impedances of the pile foundation. A total of 2072 cases, including different superstructures, pile foundations, soil deposits, and seismic input signals, are studied. The results are presented so that the influence of the different parameters involved in the analysis can be assessed. From an engineering point of view, both lumped parameter models provide, in general, sufficiently low errors. The choice of the most adequate model for each case will depend not only on the configuration of the structure and the soil-foundation system but also on the assumed soil damping model, whose influence on the computed seismic responses is relevant in many cases. The nonphysical behaviour provided by the classical hysteretic damping model for the soil at zero frequency generates issues in the process of fitting the impedance functions. It is also found that larger deck displacements are predicted by Biot's model due to the higher damping at low frequencies provided by the classical hysteretic damping model.  相似文献   

10.
The high-speed railway in China has to pass through the site surrounded by several known faults. Different earthquake mechanics of those faults and propagation paths cause different ground motions, including different peak ground accelerations (PGA), durations and characteristic periods, acting on the high-speed railway bridges. However, the previous seismic vulnerability analysis mainly aimed at the influence of PGA instead of characteristic periods on the seismic fragilities of bridge structure rather than track–bridge system. By taking a typical and common continuous bridge recommended in Chinese criterion as example, the effects of the uncertain characteristic periods of ground motions on the seismic responses and fragilities of track–bridge system were analyzed based on a numerical method. The results indicate that the probabilities exceeding any damage state of most components, including the bridge and track parts, increase with the characteristic period of ground motions. The uncertain characteristic periods of ground motions should be fully considered for the seismic design of track–bridge system, especially when the uncertain characteristic periods change around a small value. In the seismic vulnerability analysis, the uncertain of the designed characteristic period of ground motions should be developed by considering the different earthquake mechanics of several known faults surrounding the bridge site and the complex propagation paths of ground motion waves through different soils. Using a constant characteristic period of ground motions only considering the soil profile at the local site of bridge possibly leads to an unsafe result in the current criterion.  相似文献   

11.
It is commonly understood that earthquake ground excitations at multiple supports of large dimensional structures are not the same. These ground motion spatial variations may significantly influence the structural responses. Similarly, the interaction between the foundation and the surrounding soil during earthquake shaking also affects the dynamic response of the structure. Most previous studies on ground motion spatial variation effects on structural responses neglected soil–structure interaction (SSI) effect. This paper studies the combined effects of ground motion spatial variation, local site amplification and SSI on bridge responses, and estimates the required separation distances that modular expansion joints must provide to avoid seismic pounding. It is an extension of a previous study (Earthquake Engng Struct. Dyn. 2010; 39 (3):303–323), in which combined ground motion spatial variation and local site amplification effects on bridge responses were investigated. The present paper focuses on the simultaneous effect of SSI and ground motion spatial variation on structural responses. The soil surrounding the pile foundation is modelled by frequency‐dependent springs and dashpots in the horizontal and rotational directions. The peak structural responses are estimated by using the standard random vibration method. The minimum total gap between two adjacent bridge decks or between bridge deck and adjacent abutment to prevent seismic pounding is estimated. Numerical results show that SSI significantly affects the structural responses, and cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The response of an elastic circular wedge on a flexible foundation embedded into a half-space is investigated in the frequency domain for incident pane SH-waves. The problem is solved by expansion of the motion in all three media (wedge, foundation and half-space) in cylindrical wave functions (Fourier-Bessel series). The structural model is simple, but accounts for both differential motions of the base and for the effects of soil-structure interaction. Usually, structural models in earthquake engineering consider either differential ground motion, but ignore soil-structure interaction, or consider soil-structure interaction, but for a rigid foundation, thus ignoring differential ground motion. The purpose of the study is to find how stiff the foundation should be relative to the soil so that the rigid foundation assumption in soil-structure interaction models is valid. The shortest wavelength of the incident waves considered in this study is one equal to the width of the base of the wedge. It is concluded that, for this model, a foundation with same mass density as the soil but 50 times larger shear modulus behaves as ‘rigid’. For ratio of shear moduli less than 16, the rigid foundation assumption is not valid. Considering differential motions is important because of additional stresses in structures that are not predicted by fixed-base and rigid foundation models.  相似文献   

14.
The aim of this paper is to study the effects of soil–structure interaction on the seismic response of coupled wall-frame structures on pile foundations designed according to modern seismic provisions. The analysis methodology based on the substructure method is recalled focusing on the modelling of pile group foundations. The nonlinear inertial interaction analysis is performed in the time domain by using a finite element model of the superstructure. Suitable lumped parameter models are implemented to reproduce the frequency-dependent compliance of the soil-foundation systems. The effects of soil–structure interaction are evaluated by considering a realistic case study consisting of a 6-storey 4-bay wall-frame structure founded on piles. Different two-layered soil deposits are investigated by varying the layer thicknesses and properties. Artificial earthquakes are employed to simulate the earthquake input. Comparisons of the results obtained considering compliant base and fixed base models are presented by addressing the effects of soil–structure interaction on displacements, base shears, and ductility demand. The evolution of dissipative mechanisms and the relevant redistribution of shear between the wall and the frame are investigated by considering earthquakes with increasing intensity. Effects on the foundations are also shown by pointing out the importance of both kinematic and inertial interaction. Finally, the response of the structure to some real near-fault records is studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Seismic fragilities of buildings are often developed without consideration of soil-structure interaction (SSI), where base of the building is assumed to be fixed. This study highlights effect of SSI and uncertainty in soil properties such as friction angle, cohesion, density, shear modulus and Poisson's ratio and foundation parameters on seismic fragilities of non-ductile reinforced concrete frames resting in dense silty sand. Three-, five-, and nine-storey three-bay moment resisting reinforced concrete frames resting on isolated shallow foundation are studied and the numerical models for SSI are developed in OpenSees. Three sets of 10 ground motions, with mean spectrum of 100, 500, and 1000 yr return period hazard level (matching EC-8 design spectrum), are used for the nonlinear time history analyses. An optimized Latin Hyper Cube sampling technique is used to draw the sample of soil properties and foundation parameters. The fragilities are developed for the fixed base model and SSI models. However, the fragilities that incorporate the soil parameter and foundation uncertainties are only slightly different from those based solely on the uncertainty in seismic demand from earthquake ground motion, suggesting that fragilities that are developed under the assumption that all soil and foundation parameters at their median (or mean) values are sufficient for the purpose of earthquake damage or loose estimation of structures resting on dense silty sand. But the consideration of the SSI effect has the significant influence on the fragilities compare to the fixed base model. The structural parameter uncertainty and foundation modeling uncertainty are not considered in the study.  相似文献   

16.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

17.
2021年5月22日青海省玛多县发生了M7.4地震,造成玛多县境内的野马滩1、2号桥破坏,其主要表现为桥梁纵向位移过大导致多跨主梁落梁,桥墩也有不同程度的破损.经现场专家鉴定,地震影响烈度均突破桥梁抗震设计值,并且初步判断这种整齐划一的落梁震害的机理系近断层地震动方向性效应的强速度脉冲作用所致.野马滩大桥位置的地震影响烈度调查结果为Ⅸ,但是野马滩大桥附近无强震动观测台站,大桥附近没有获得地震动记录,这不利于野马滩大桥地震作用下地震响应和破坏机理的研究.另外,野马滩大桥的设计参数和折损情况也很难掌握,桥梁模型难以准确估计.为此,本文拟采用另一座同等抗震设防烈度的桥梁,通过有限元程序,使用反应谱法作为参考,同时使用拟合的地震动和脉冲记录进行桥梁结构反应时程分析,以便间接地揭示玛多地震桥梁地震反应特征和破坏机理.计算结果分析表明,所分析的桥梁结构地震响应位移和内力均超过罕遇地震设计值,其中一条地震动记录最大反应接近极罕遇设计值,导致桥梁结构出现破坏甚至损毁震害现象的出现.  相似文献   

18.
This paper proposes a dynamic centrifuge model test method for the accurate simulation of the behaviours of a liquid storage tank with different types of foundations during earthquakes. The method can be used to determine the actual stress conditions of a prototype storage‐tank structure. It was used in the present study to investigate the soil‐foundation‐structure interactions of a simplified storage tank under two different earthquake motions, which were simulated using a shaking table installed in a centrifuge basket. Three different types of foundations were considered, namely, a shallow foundation, a slab on the surface of the ground connected to piles and a slab with disconnected piles. The test results were organised to compare the ground surface and foundation motions, the slab of foundation and top of structure motions and the horizontal and vertical motions of the slab, respectively. These were used to establish the complex dynamic behaviours of tank models with different foundations. The effects of soil–foundation–structure interaction with three foundation conditions and two different earthquake motions are focused and some important factors, that should be considered for future designs are also discussed in this research. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The 1995 Hyogo-ken Nanbu (Kobe) earthquake brought about enormous damage to structures in the Hanshin and Awaji areas. In this paper the importance of investigating the relationship between ground motion and structural damage is pointed out.

Strong seismic motion was observed at the NTT (Nippon Telegraph and Telephone) Building during this earthquake. The structural damage to this building was relatively slight. In order to evaluate the relationship between ground motion and structural damage, it is necessary to assess the effects of the soil–structure interaction. In this study, the seismic response of the building and of the surface soil were evaluated by means of a nonlinear soil–structure interaction analysis using FEM.

It was found that, the nonlinearity of surface soil near the building had a great effect on the soil–structure interaction, especially the rocking of the building.  相似文献   


20.
In soil‐structure interaction modeling of systems subjected to earthquake motions, it is classically assumed that the incoming wave field, produced by an earthquake, is unidimensional and vertically propagating. This work explores the validity of this assumption by performing earthquake soil‐structure interaction modeling, including explicit modeling of sources, seismic wave propagation, site, and structure. The domain reduction method is used to couple seismic (near‐field) simulations with local soil‐structure interaction response. The response of a generic nuclear power plant model computed using full earthquake soil‐structure interaction simulations is compared with the current state‐of‐the‐art method of deconvolving in depth the (simulated) free‐field motions, recorded at the site of interest, and assuming that the earthquake wave field is spatially unidimensional. Results show that the 1‐D wave‐field assumption does not hold in general. It is shown that the way in which full 3‐D analysis results differ from those which assume a 1‐D wave field is dependent on fault‐to‐site geometry and motion frequency content. It is argued that this is especially important for certain classes of soil‐structure systems of which nuclear power plants subjected to near‐field earthquakes are an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号