共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
在语义信息缺乏的情况下进行点群选取是制图综合的难点之一。提出了一种新的通过多层次聚类进行点群选取的方法。首先,针对k-means聚类算法的不足,利用改进的密度峰值聚类算法实现点群自动聚类,主要表现为用基尼系数确定最优截断距离及用局部密度和相对距离的关系自动确定聚类中心。其次,提出一种顾及密度对比的选取策略,通过点群多层次聚类,将点群划分成不同等级的簇,确定不同等级的聚类中心,建立点群的层次树结构;依据方根定律计算的选取数量,按照各级别簇的点数比例,自上而下逐层分配待选取点数,确定选取对象,实现点群的自动选取和多尺度表达。对不同分布模式的点群进行实验,验证了该方法的普适性和有效性。 相似文献
3.
为解决聚类数未知条件下面状地理实体的聚类问题,文中提出了一种基于聚类有效性函数的聚类方法。给出了适合面状地理实体k-中心点聚类算法的聚类有效性函数;将该有效性函数改写为适应度函数,设计了基于遗传算法的面状地理实体聚类算法。该算法在计算聚类数的同时能得到划分聚类结果。实验结果从一定程度上反映了数据集的结构信息特征。 相似文献
4.
基于聚类有效性函数的面状地理实体聚类 总被引:2,自引:0,他引:2
为解决聚类数未知条件下面状地理实体的聚类问题,文中提出了一种基于聚类有效性函数的聚类方法.给出了适合面状地理实体k-中心点聚类算法的聚类有效性函数;将该有效性函数改写为适应度函数,设计了基于遗传算法的面状地理实体聚类算法.该算法在计算聚类数的同时能得到划分聚类结果.实验结果从一定程度上反映了数据集的结构信息特征. 相似文献
5.
空间聚类是将空间实体根据某些相似的特性聚类成为一个集合,这个集合称为簇。本文研究了一种基于中心点距离的居民地面要素聚类算法:通过获取面状要素的数据,运用基于其几何中心的距离计算方法,判断面要素之间距离的可达性,并将距离小于阈值的面要素进行聚类,最终以凸包的形式将该集合绘制出来。本文的算法是在VS2010以及ArcGIS Engine开发环境下通过编程实现,并进行多组实验,实验结果表明,该应用程序可以实现居民地面要素的自动聚类。 相似文献
6.
7.
8.
9.
特征分类与邻近图相结合的建筑物群空间分布特征提取方法 总被引:2,自引:0,他引:2
建筑物群综合过程中需要对建筑物群空间分布特征进行认知和识别。本文在分析国内外相关研究的基础上,从描述建筑物空间特征的大量指标中,利用主成份分析方法,总结并提出了有代表性的建筑物空间特征指标集:凸包面积、紧密度IPQ指标、边数和最小面积外接矩形方向,并基于这些指标研究了建筑物群的分类。在利用最小生成树邻近图(MST)划分建筑物空间子群时,考虑了建筑物成群与所处地理环境(河流和道路等因素)的关系。另外,基于最邻近图(NNG)、MST、相对邻近图(RNG)和Gabriel图(GG)4种建筑物群邻近图,提出了自动识别具有特定空间排列建筑物子群的方法,并比较分析了识别结果的影响因素和可用性。最后,选择北京某地区建筑物群为试验对象,实现了对建筑物群的分类和空间聚类,并提取了其中直线型空间排列的建筑物子群。 相似文献
10.
11.
12.
顾及距离与形状相似性的面状地理实体聚类 总被引:3,自引:0,他引:3
与点状地理实体不同,面状地理实体不仅具有位置特征,还具有形状特征。对于面状地理实体而言,仅考虑距离因素设计聚类准则是不全面的。综合考虑距离和几何形状相似性来设计聚类准则,实现了相应的聚类算法。实验证明,该算法适合面状地理实体的聚类分析。 相似文献
13.
本文从空间-语义双重约束角度,提出一种顾及空间邻近和功能语义相似的建筑物空间分布模式识别方法。首先,基于建筑物的空间位置邻近性(即建筑物间的最小距离)约束进行聚类,获得建筑物的空间分布模式和建筑物间的空间邻近关系;然后,根据建筑物的功能语义相似性约束进行分割,获得建筑物的初步聚类结果;最后,考虑簇内相似性与簇间差异性进行整体优化,获得最终聚类结果。试验验证表明,本文方法比现有方法能够更有效地识别空间邻近与功能语义一致的建筑物群,服务于智慧城市建设中对建筑物进行语义层次综合和对城市结构进行深入研究的需求。 相似文献
14.
融合时空邻近与专题属性相似的时空聚类是挖掘地理现象时空演化规律的重要手段。现有方法需要的聚类参数许多难以获取,影响了聚类方法的可操作性与聚类结果的可靠性。提出一种基于重排检验的时空聚类方法。首先,通过重排检验发现时空数据集中的均质子区域;进而,采用均方误差准则合并均质子区域内的时空实体生成时空簇,并通过簇内重排检验自动识别聚类合并的终止条件;最后,借助时空拓扑关系在保证结果精度的前提下发展一种快速重排检验的方法,提高了聚类方法的运行效率。通过实验和比较发现,该方法一方面可以发现不同形状、大小的时空簇,聚类质量优于经典的ST-DBSCAN方法;另一方面聚类过程中人为设置参数的主观性显著降低,提高了聚类方法的可操作性。 相似文献
15.
16.
对于十分规则的道路网(城市道路)来说构造网眼是十分容易的,且得到的道路网眼完整性较高,然而对于乡村道路,由于数据采集习惯或数据质量的影响,道路在居民地附近容易断开,导致计算机不能构造完整的网眼。本文针对这个问题,提出了利用居民地聚类和缓冲区分析的方法辅助道路网眼的构建,从而提高了乡镇郊区道路网眼的完整性,为采用网眼合并的方式进行综合的方法,以及各种基于网眼的空间分析提供了有效支撑。 相似文献
17.
农村居民地空间分布具有独特的规律性和复杂性,Voronoi图在表达居民地分布特征方面有显著优势。针对当前空间聚类较少考虑实体方向关系的问题,基于Voronoi图提出一种顾及方向关系的农村居民地聚类方法。首先,构建距离约束的Voronoi图,并构建居民地实体间的Voronoi邻近图;然后,利用无向特征与有向特征来综合评价居民地实体间的聚集强度;最后,消除聚集强度小于阈值的实体对的邻近关系,得到聚类结果。采用浙江省宁波地区部分农村居民地数据进行实验,结果表明,所提方法能够有效聚类不同分布模式的居民地,聚类结果符合人的认知习惯。 相似文献
18.
19.
开展耕地科学分区对于耕地管理利用、种养结合、耕地集约化等方面具有重要的现实意义。本文基于CURE、K-medoid、Single link和BIRCH 4种空间聚类算法,以上街镇耕地数据为例,利用SuperMap iObjects. NET8C组件开展耕地空间聚类对比分析研究,并采用轮廓系数,从凝聚度和分离度的角度比较各种耕地聚类算法的合理性,进而得到耕地的最佳空间聚类结果,以期为区域耕地资源科学配置和优化提供科学依据。 相似文献
20.
面目标的聚集模式识别是空间聚类研究的重要方向之一,但因多边形几何信息和空间障碍阻隔的双重约束,目标的位置相似性难以快速而准确地计算。扩展点目标多尺度聚类方法,通过构建面目标的强度函数计算目标与邻近目标的位置聚集程度,提出了有效作用于双重约束下的面目标位置聚类法,并以判断相邻尺度下同一面目标类的强度函数阈值相等作为算法的收敛条件。经试验分析与比较发现,算法无须自定义参数,能够识别密度不均、任意形状分布,以及"桥"链接的面目标集群,同时能够准确判断障碍约束对面目标簇的阻隔和划分。 相似文献