首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A helicopter-based Doppler scatterometer (Multi$^{3}$Scat) is described. It allows simultaneous measurements of the surface radar backscatter at five different frequencies at co- and cross-polarization at incidence angles of 20$^{circ}$ –65$^{circ}$ from an altitude of 30–300 m. Video and infrared (IR) cameras simultaneously sense the surface in the scatterometers' footprint. The Multi $^{3}$Scat is calibrated using measurements carried out over corner reflectors. The stability of the Multi$^{3}$Scat's signal is found to be, on average, better than 0.5 dB. Typical signal-to-noise-ratio values for sigma-0 range between 10 and 20 dB for cross-polarization and between 15 and 25 dB for copolarization over snow and ice surfaces. The potential of the Multi$^{3}$Scat to acquire multifrequency multipolarization radar backscatter data and coincident video and IR temperature observations at different incidence angles over remote terrain such as the Arctic Ocean or the Alps is demonstrated.   相似文献   

2.
Tropical cyclones when on land create havoc, but over the oceans they can trigger a very strong biological response, giving rise to phytoplankton blooms. The Super Cyclone (TC) 05B that occurred during October 25–29, 1999, in the Bay of Bengal over the tropical Indian ocean was one of the most significant tropical cyclones on record to affect India, with maximum winds of 240 km/h, and the worst since 1971. Using satellite data, it is found that this tropical super cyclone helped spawn a notable mesoscale phytoplankton bloom in the domain (17 $^{circ}$–20$^{circ} hbox{N}$; 87$^{circ}$–90 $^{circ} hbox{E}$), which persisted for over a month. The bloom spanned 440 km zonally and 330 km meridonally, enhanced the chlorophyll-$a$ concentrations to a maximum of 10 $hbox{mg/m}^{3}$ and the net primary productivity by 200%. Furthermore, a cyclonic eddy over the bloom region is revealed from an ocean general circulation model simulation, helping the bloom to last for over month.   相似文献   

3.
The Land Parameter Retrieval Model (LPRM) has been successfully applied to retrieve soil moisture from space-borne passive microwave observations at C-, X-, or Ku-band and high incidence angles (50 $^{circ}$–55$^{circ}$ ). However, LPRM had never been applied to lower angles or to L-band observations. This letter describes the parameterization and performance of LPRM using aircraft and ground data from the National Airborne Field Experiment 2005. This experiment was undertaken in November 2005 in the Goulburn River catchment, which is located in southeastern Australia. It was found that model convergence could only be achieved with a temporally dynamic roughness. The roughness was parameterized according to incidence angle and soil moisture. These findings were integrated in LPRM, resulting in one uniform parameterization for all sites. The parameterized LPRM correlated well with field observations at 5-cm depth ($r = 0.93$ based on all sites) with a negligible bias and an accuracy of 0.06 $hbox{m}^{3}cdot hbox{m}^{-3}$. These results demonstrate comparable retrieval accuracies as the official SMOS soil-moisture retrieval algorithm (L-MEB), but without the need for the ancillary data that are required by L-MEB. However, care should be taken when using the proposed dynamic roughness model as it is based on a limited data set, and a more thorough evaluation is necessary to test the validity of this new approach to a wider range of conditions.   相似文献   

4.
In this letter, we evaluate the relationships between the sea-surface temperatures (SSTs) and meteorological parameters over the Bay of Bengal region, India, using microwave satellite remote sensing data. Most of the cyclones in this region occur during the premonsoon period in April–June and are associated with SSTs greater than 26 $^{circ}hbox{C}$. We particularly analyzed the data from two recent cyclonic events: Mala that occurred in April 24, 2006 and Tropical Cyclone 01B (TC 01B) that occurred in May 11, 2003. We used two different remote sensing data sets, sea surface temperature (SST) from the Tropical Rainfall Measurement Mission and the NASA QuikSCAT ocean surface wind vectors to characterize the ocean–atmosphere interactions in cold SST regions formed in the trail of the aforementioned two cyclone events. The results from the satellite data analysis suggested the systematic weakening of wind speed over the cold patch, along the trail of the cyclone. A cooling of around 4$^{circ}$–5 $^{circ}$ was observed to be associated with the passage of cyclone Mala. Wind speed gradually increased from 2 to 9 m/s from the center to the boundary of the cold patch and showed good correlation with SST $(r = 0.97)$. These observations have been validated with another cyclone data (TC 01B) over the Bay of Bengal region that occurred during May 2003. Our results were consistent with the Wallace hypothesis that SST modulates the surface winds via stability.   相似文献   

5.
A radar altimeter's normalized backscatter, $sigma^{0}$, is used in many oceanographic applications to infer values of wind speed, wind stress, rain rate, and the presence of biogenic slicks. The waveform retracker used to estimate the key geophysical variables for the altimeters on the Jason-1 and Jason-2 satellites shows increased small-scale variability since the problem is ill-conditioned. A simple empirical adjustment to $sigma^{0}$ improves the separability between various parameters and also improves the along-track profiles of $sigma^{0}$. This leads to the following: 1) more realistic wind fields; 2) better discrimination of rain events; and 3) improved comparison between the Jason-1 and Jason-2 altimeters during their tandem mission.   相似文献   

6.
The availability of an automatic tool for vine plot detection, delineation, and characterization would be very useful for management purposes. An automatic and recursive process using frequency analysis (with Fourier transform and Gabor filters) has been developed to meet this need. This results in the determination of vine plot boundary determination and accurate estimation of interrow width and row orientation. To foster large-scale applications, tests and validation have been carried out on standard very high spatial resolution remotely sensed data. About 89% of vine plots are detected corresponding to more than 84% of vineyard area, and 64% of them have correct boundaries. Compared with precise on-screen measurements, vine row orientation and interrow width are estimated with an accuracy of 1$^{circ}$ and 3.3 cm, respectively.   相似文献   

7.
Soil electromagnetic properties at the microwave frequencies have been extensively documented in the literature. However, similar information at the higher millimeter frequencies is not available. A laboratory experiment was conducted to investigate the extinction behavior of wet and dry soil at millimeter wavelengths (26.5–110 GHz). For dry soil, the extinction coefficient increased from 0.02 to 0.6 $hbox{cm}^{-1}$ as the frequency increased from 26.5 to 110 GHz. The presence of even a small amount of water in the soil (5% by weight) reduced the penetration of millimeter wave signals into soil by a factor of ten.   相似文献   

8.
The 46-$hbox{km}^{2}$ Livingstone Creek Catchment in southeastern Australia was flown with a passive microwave airborne remote sensor four times throughout the three-week National Airborne Field Experiment in 2006, with a spatial resolution of $sim$200 m. Both continuous and discrete measurements of soil moisture were taken to help with interpretation of results. The catchment was experiencing extreme drought conditions leading up to the experiment, and as a result, ground cover in the catchment was minimal with many paddocks consisting of sparse dry stubble and grass. During the experiment period of November 2006, 30 mm of rainfall occurred, with the catchment going from parched dry conditions to surface wet conditions and back to dry conditions again in a short period of time. Changes in moisture responses observed by the airborne passive microwave sensor were field verified to reflect the different geology, soil, and landform elements of the catchment. Consequently, this study suggests that passive microwave remote sensing has potential as a tool to assist with soil mapping, through detecting changes in soil moisture spatial and temporal patterns.   相似文献   

9.
An approach is proposed for quality ($Q$) factor estimation from the variation of envelope peak instantaneous frequency (EPIF). For a frequency-independent $Q$ model, assuming that the propagating wavelet can be modeled by a Gaussian function with constant phase, an approximate analytic relation between $Q$ and EPIF variation is derived. Synthetic tests show that the EPIF method has higher resolution and is less sensitive to noise and interference reflection than common methods. The field test of reflection seismic data indicates that the zone of lower $Q$ -factors corresponds well to the gas reservoir.   相似文献   

10.
This letter presents a modification to the established Fraunhofer line discrimination (FLD) method for improving the accuracy of the solar-induced chlorophyll fluorescence (ChF) retrieval over terrestrial vegetation. The FLD method relies on the decoupling of reflected and ChF emitted radiation by the evaluation of measurements inside and outside the absorption bands. The improved FLD method introduces two correction coefficients that relate the values of the fluorescence and the reflectance inside and outside the absorption band. The new method uses the full spectral information around the absorption band to derive these coefficients. A sensitivity analysis has been performed to evaluate the impact of the correction coefficients on the accuracy of the ChF estimation. The new formulation has been tested for the $hbox{O}_{2}$ A-band on synthetic data obtaining lower errors in comparison to the standard FLD and has been successfully applied to real measurements at canopy level.   相似文献   

11.
The Altimetric Bathymetry from Surface Slopes (ABYSS), which is the proposed science payload on the International Space Station (ISS), is a Johns Hopkins University Applied Physics Laboratory-developed flight-proved delay-Doppler phase-monopulse radar altimeter capable of measuring ocean surface slope in the 6–200-km half-wavelength frequency band range with an accuracy of 0.5 $muhbox{rad}$ , with autonomous gimbal control to compensate for the ISS structural motions. This measurement allows an improved mapping of the global bathymetry, enabling a wide range of scientific research works and applications. The nonrepeat ISS orbital ground track is ideal for ABYSS. This letter describes a simulation study on the effects of the Earth's gravity field and other errors, including thermal bending of the ISS, on the orbit determination of the altimeter instrument antenna phase center location, fulfilling the science objectives of ABYSS. Our study concluded that the error due to mean gravity field is no longer limiting due primarily to the recent Gravity Recovery and Climate Experiment gravity modeling and that the ABYSS/ISS radial orbit slope error budget in the presence of various force and measurement model errors is estimated at the 0.2-$mu hbox{rad}$ root-sum-squared (RSS) level, which satisfies the ABYSS orbit accuracy science requirement to provide an improved mapping of global bathymetry.   相似文献   

12.
A brightness temperature is defined as a linear function of the Planck radiance, with the linear coefficients optimized to minimize the difference between the brightness temperature and the physical temperatures of atmospheric and terrestrial emitters. Radiative transfer (RT) calculations can be accelerated by formulating the integration in terms of this brightness temperature while producing output in terms of radiance or brightness temperature. Approximation errors are $≪ 0.012$ K for RT model applications up to 400 GHz, for any upward, downward, or limb-view geometry, which is about an order of magnitude smaller than for the common brightness temperature derived from a second-order expansion of the Planck function. When products of an RT model that uses this optimized Planck approximation are compared with measurements and the measured radiance is high (equivalent brightness temperature is $≫ 170$ K), it can be advantageous to apply a complementary approximation to the measurements to benefit from error compensation between the model and the measurements. Alternatively, error compensation can be obtained if the calibration and RT equations use consistent brightness temperature approximations.   相似文献   

13.
This letter investigates the possible coalition of time intervals and patterns in seismic activity during the preparation process of consecutive sizeable seismic events (i.e., $M_{S} geq 5.9$). During periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area, while larger seismic events act as a decongesting mechanism that releases considerable amounts of that energy. Monthly mean seismicity rates have been introduced as a tool to monitor this energy management system and to divert this information into an adaptive neuro-fuzzy inference system. The purpose of the neuro-fuzzy model is to identify and to simulate the possible relationship between mean seismicity rates and time intervals among consecutive sizeable earthquakes. Successful training of the neuro-fuzzy model results in a real-time online processing mechanism that is capable of estimating the time interval between the latest and the next forthcoming sizeable seismic event.   相似文献   

14.
In this letter, a general Bayesian data fusion (BDF) approach is proposed and applied to the spatial enhancement of ASTER thermal images. This method fuses information coming from the visible or near-infrared bands (15 $times$ 15 m pixels) with the thermal infrared bands (90 $times$ 90 m pixels) by explicitly accounting for the change of support. By relying on linear multivariate regression assumptions, differences of support size for input images can be explicitly accounted for. Due to the use of locally varying variances, it also avoids producing artifacts on the fused images. Based on a set of ASTER images over the region of Lausanne, Switzerland, the advantages of this support-based approach are assessed and compared to the downscaling cokriging approach recently proposed in the literature. Results show that improvements are substantial with respect to both visual and quantitative criteria. Although the method is illustrated here with a specific case study, it is versatile enough to be applied to the spatial enhancement problem in general. It thus opens new avenues in the context of remotely sensed images.   相似文献   

15.
The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was $-$0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.   相似文献   

16.
The QuikSCAT enhanced (2.225-km) backscattering product is investigated for sensitivity to changes in soil moisture and its potential for spatial disaggregation of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture. Specifically, an active–passive methodology based on temporal change detection is tested using data from the 2006 National Airborne Field Experiment data set. This campaign was carried out from October 29 to November 20, 2006 in a 60 km $times$ 40 km area of the Murrumbidgee catchment, southeast Australia. Temporal change detection analysis and accuracy in terms of spatial pattern distribution throughout the domain were assessed using a passive microwave airborne product derived from the Polarimetric L-band Multibeam Radiometer at 1-km spatial resolution. QuikSCAT–AMSR-E intercomparisons indicated higher correlations when using C-band observations. The greatest sensitivity to soil moisture was observed when using V-polarized backscatter measurement. While backscattering data showed adequate temporal sensitivity to changes in soil moisture due to precipitation events, the spatial agreement was complicated by the presence of irrigation and standing water (rice fields). This resulted in low Cramer's Phi values (less than 0.06), which were used as a measure of spatial correspondence in terms of change in soil moisture and backscatter. In addition, the high QuikSCAT sensor frequency and existence of noise in the observed data contributed to the observed discrepancies.   相似文献   

17.
为了有效检测交通状况,提出了一种使用GNSS-R (导航卫星反射)信号进行车流检测的方法。该方法利用两种天线分别接收导航卫星直射信号和反射信号,使用通用接收机进行信号采集后,在软件接收机中进行信号处理解算,获得直射通道和反射通道的相关功率,以及卫星的高度角。然后使用反演介电常数的方法对车辆进行探测,获得交通车流状况。通过试验验证,该方法能够有效地对探测区域内的车辆进行检测,证明了使用GNSS-R进行交通车流检测的可行性。  相似文献   

18.
In physical geodesy, the residual terrain modelling (RTM) technique is frequently used for high-frequency gravity forward modelling. In the RTM technique, a detailed elevation model is high-pass-filtered in the topography domain, which is not equivalent to filtering in the gravity domain. This in-equivalence, denoted as spectral filter problem of the RTM technique, gives rise to two imperfections (errors). The first imperfection is unwanted low-frequency (LF) gravity signals, and the second imperfection is missing high-frequency (HF) signals in the forward-modelled RTM gravity signal. This paper presents new solutions to the RTM spectral filter problem. Our solutions are based on explicit modelling of the two imperfections via corrections. The HF correction is computed using spectral domain gravity forward modelling that delivers the HF gravity signal generated by the long-wavelength RTM reference topography. The LF correction is obtained from pre-computed global RTM gravity grids that are low-pass-filtered using surface or solid spherical harmonics. A numerical case study reveals maximum absolute signal strengths of \(\sim 44\) mGal (0.5 mGal RMS) for the HF correction and \(\sim 33\) mGal (0.6 mGal RMS) for the LF correction w.r.t. a degree-2160 reference topography within the data coverage of the SRTM topography model (\(56^{\circ }\hbox {S} \le \phi \le 60^{\circ }\hbox {N}\)). Application of the LF and HF corrections to pre-computed global gravity models (here the GGMplus gravity maps) demonstrates the efficiency of the new corrections over topographically rugged terrain. Over Switzerland, consideration of the HF and LF corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 4.41 to 3.27 mGal, which translates into \(\sim 26\)% improvement. Over a second test area (Canada), our corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 5.65 to 5.30 mGal (\(\sim 6\)% improvement). Particularly over Switzerland, geophysical signals (associated, e.g. with valley fillings) were found to stand out more clearly in the RTM-reduced gravity measurements when the HF and LF correction are taken into account. In summary, the new RTM filter corrections can be easily computed and applied to improve the spectral filter characteristics of the popular RTM approach. Benefits are expected, e.g. in the context of the development of future ultra-high-resolution global gravity models, smoothing of observed gravity data in mountainous terrain and geophysical interpretations of RTM-reduced gravity measurements.  相似文献   

19.
多路径效应是影响卫星定位精度和稳定性的重要因素。针对多路径环境复杂多变难以进行分析的问题,该文提出了一种利用双极性天线探测多路径的方法。详细介绍了反射信号的极性特征;通过判断信号的极性可以有效地区分直射信号和反射信号。分析了通过信号极性实现多路径探测的理论:组成双极性天线的右螺旋圆极化天线和左螺旋圆极化天线能够分别输出卫星信号中的右螺旋圆极化分量和左螺旋圆极化分量,如果两个分量的载噪比差值大于一定的门槛值,就可以推断卫星信号在传输过程中经历了多路径效应。最后通过仿真实验验证了该方法的可行性和有效性。  相似文献   

20.
小波变换与滑动窗口相结合的GNSS-IR雪深估测模型   总被引:1,自引:0,他引:1  
边少锋  周威  刘立龙  李厚朴  刘备 《测绘学报》1957,49(9):1179-1188
GNSS干涉反射技术(GNSS interferometric reflectometry)是一种新型的地表雪深监测方式。针对当前信号分离不佳和随机估测偏差的问题,提出联合小波变换和滑动窗口构建一种多卫星融合的GNSS-IR雪深估测精化模型。该模型采用离散小波变换代替常用的多项式方法,获取高质量的信噪比序列。通过利用阈值约束下的滑动窗口筛选多卫星有效反射高度,并进行等权平均。以PBO H2O和SNOTEL的雪深数据为参考值,利用2016—2017年雪季的GNSS观测数据建立模型并验证精度。结果表明:①GNSS-IR精化模型估测结果与实测数据在整体趋势上保持高一致性;②与单颗卫星结果相比,多卫星融合估测结果在精度和稳定性方面明显改善,其均方根误差(RMSE)为10 cm,相较于PBO H2O减少了近50%。此外,考虑到地表粗糙度作为一种误差影响因素,采用新的反射高度基准修正的雪深估测相对RMSE误差约4 cm,同时估测值与实际值的相关系数达到0.98。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号