首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The performance of two Canadian land surface schemes of widely differing complexity is compared and contrasted in a pair of year‐long simulations using the GCM developed at Atmospheric Environment Service, Canada. The old land surface model incorporates the force‐restore method for soil temperatures and the bucket approximation for soil moisture; the new model, CLASS (Canadian Land Surface Scheme) features three soil layers, an explicitly modelled snow layer, a thermally separate vegetation canopy, and physically‐based calculations of heat and moisture transfers between all of the land surface components and the atmosphere.

It was reported in previous papers that compared with observations, the old scheme tends to generate a climate which is characterized by anomalously high precipitation rates and cold temperatures over land. In this paper, by reference to field measurements and to the energy fluxes and temperatures generated by the two models at local scales, the hypotheses earlier postulated as to the underlying reasons for this are validated. The main factor contributing to the climate anomalies observed with the old scheme is found to be its generation of excessive evaporation rates; this is caused by the fact that the evaporation rate is never directly energy‐limited, the fact that the scaling of the evaporation rale with decreasing soil moisture content underestimates the effect of vegetation stomatal resistance, and the fact that the evaporation rate over bare soil depends not on the surface soil moisture, but on the moisture content of whole modelled soil column. The cold surface temperatures are additionally attributed to systematic errors incurred by the forward‐stepping temperature scheme, and to the fact that soils subjected to subzero temperature forcing in the winter are modelling as freezing completely. Finally, the inability of the old scheme to simulate partially frozen soils means that it proves unable to handle either shallow frost penetration at temperature latitudes, or the development of an active layer in permafrost.  相似文献   

2.
In this study, we analyze results from 47-year (1954?C2000) offline simulations using an Australian land-surface model CSIRO Atmosphere Biosphere Land Exchange. We focus on exploring its surface mean climatology, interannual and decadal variations in Australia and Amazonia basin in South America which are distinguished by dry and wet climates respectively. Its skill is assessed by using observational datasets and four model products from the Global Land-surface Data Assimilation System. Surface evaporation and runoff climatologies are satisfactorily simulated, including surface energy and water partitions in dry and wet climates. In the Australian continent dominated by dry climate, slowly varying soil moisture processes are simulated in the southeast during austral winter. The model is skilful in reproducing the nonlinear relationship between rainfall and runoff variations in the southwestern part of the Australia. It shows that the significant downward trend of river inflow in the region is associated with enhanced surface evaporation which is caused by increased surface radiation and wind speed. In its carbon-cycle modeling, the model simulates an upward trend of NPP by about 0.69%/year over the Amazonia forest region in the 47-year period. By comparing two sets of the model results with/without CO2 variations, it shows that 35% of such increases are caused by changes in climatic conditions, while 65% is due to the increase in atmospheric CO2 concentration. Given the close linkage between climate, water and vegetation (carbon cycle), this work promotes an integrated modeling and evaluation approach for better representation of land-surface processes in Earth system studies.  相似文献   

3.
In order to test the sensitivity of regional climate to regional-scale atmosphere-land cover feedbacks, we have employed a regional climate model asynchronously coupled to an equilibrium vegetation model, focusing on the western United States as a case study. CO2-induced atmosphere-land cover feedbacks resulted in statistically significant seasonal temperature changes of up to 3.5°C, with land cover change accounting for up to 60% of the total seasonal response to elevated atmospheric CO2 levels. In many areas, such as the Great Basin, albedo acted as the primary control on changes in surface temperature. Along the central coast of California, soil moisture effects magnified the temperature response in JJA and SON, with negative surface soil moisture anomalies accompanied by negative evaporation anomalies, decreasing latent heat flux and further increasing surface temperature. Additionally, negative temperature anomalies were calculated at high elevation in California and Oregon in DJF, MAM and SON, indicating that future warming of these sensitive areas could be mitigated by changes in vegetation distribution and an associated muting of winter snow-temperature feedbacks. Precipitation anomalies were almost universally not statistically significant, and very little change in mean seasonal atmospheric circulation occurred in response to atmosphere-land cover feedbacks. Further, the mean regional temperature sensitivity to regional-scale land cover feedbacks did not exceed the large-scale sensitivity calculated elsewhere, indicating that spatial heterogeneity does not introduce non-linearities in the response of regional climate to CO2-induced atmosphere-land cover feedbacks.  相似文献   

4.
 Global coupled simulations with the Bureau of Meteorology Research Centre climate model and the CHAmeleon Surface Model (CHASM) are used to examine how four general extensions to the representation of the basic land surface energy balance affect simulated land-atmosphere interface variables: evaporation, precipitation, skin temperature and air temperature. The impacts of including separate surface energy balance calculations for: vegetated and non-vegetated portions of the land surface; an explicit parametrisation of canopy resistance; explicit bare ground evaporation; and explicit canopy interception are isolated and quantified. The hypothesis that these aspects of surface energy balance parametrisation do not contain substantial information at the monthly time scale (and are therefore not important to consider in a land surface model) is shown to be false. Considerable sensitivity to each of the four general surface energy balance extensions is identified in average pointwise monthly changes for important land-atmosphere interface variables. Average pointwise changes in monthly precipitation and land evaporation are equal to about 40 and 31–37% of the global-average precipitation and land evaporation respectively. Average pointwise changes for land surface skin temperature and lowest model layer air temperature are about 2 and 0.9 K respectively. The average pointwise change and average pointwise biases are statistically significant at 95% in all cases. Substantial changes to zonally average variables are also identified. We demonstrate how the globally averaged surface resistance parameter can vary from 150 to 25 s/m depending on which aspects of the surface energy balance are treated implicitly. We also show that if interception is treated implicitly, the effective surface resistance must vary geographically in order to capture the behaviour of a model which treats this process explicitly. The implication of these results for the design of land surface models is discussed. Received: 8 July 1999 / Accepted: 1 September 2000  相似文献   

5.
Summary The response of the climatic system to changes in its radiative forcing has been the subject of much study. Climate models of various complexity have been used to demonstrate that a small increase in the solar constant, or doubling of the atmospheric CO2, would lead to a warmer surface. Very little scientific attention, however, has been given to the effect such a change in radiative balance might have on climatic variability. That is, would an earth warmed in this way be more temperate or more variable? To move one step closer to answering this question, we employed a simple one-dimensional surface energy balance climate model and forced it with random Gaussian white noise to simulate interannual variability. We integrated the model using 0, 2, and 4% increases in the solar constant. The results of these numerical experiments indicate that, under a warmer surface radiative balance, interannual variability of the surface temperature is reduced.  相似文献   

6.
The radiative forcings and feedbacks that determine Earth’s climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO2). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO2 forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m?2 K?1 (0.60 W m?2 K?1) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m?2 K?1 and increases the surface radiative heating by 0.89 W m?2 K?1; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m?2 K?1, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight the fundamental importance of the global water cycle to Earth’s climate sensitivity.  相似文献   

7.
Through an Australia-China climate change bilateral project, we analyzed results of 51-year global offline simulations over China using the Australian community atmosphere biosphere land exchange (CABLE) model, focusing on integrated studies of its surface energy, water and carbon cycle at seasonal, interannual and longer time-scales. In addition to the similar features in surface climatology between the CABLE simulation and those derived from the global land-surface data assimilation system, comparison of surface fluxes at a CEOP reference site in northeast China also suggested that the seasonal cycles of surface evaporation and CO2 flux are reasonably simulated by the model. We further assessed temporal variations of model soil moisture with the observed variations at a number of locations in China. Observations show a soil moisture recharge–discharge mechanism on a seasonal time scale in central-east China, with soil moisture being recharged during its summer wet season, retained in its winter due to low evaporation demand, and depleted during early spring when the land warms up. Such a seasonal cycle is shown at both 50- and 100-cm soil depths in observations while the model only shows a similar feature in its lower soil layers with its upper layer soil moisture varying tightly with rainfall seasonal cycle. In the analysis of the model carbon cycle, the net primary productivity (NPP) has similar spatial patterns as the ones derived from an ecosystem model with remote sensing. The simulated interannual variations of NPP by CABLE are consistent with the results derived from remote sensing-based and process-based studies over the period of 1981–2000. Nevertheless an upward trend from observations is not presented in the model results. The model shows a downward trend primarily due to the constant CO2 concentration used in the experiment and a large increase of autotrophic respiration caused by an upward trend in surface temperature forcing data. Furthermore, we have compared river discharge data from the model experiments with observations in the Yangtze and Yellow River basins in China. In the Yangtze River basin, while the observed interannual variability is reasonably captured, the model significantly underestimates its river discharge, which is consist with its overestimation of evaporation in the region. In the Yellow River basin, the magnitudes of the river discharge is similar between modeled and observed but its variations are less skillfully captured as seen in the Yangtze River region.  相似文献   

8.
Using a climate model with a sophisticated land surface scheme, simulations were conducted to explore the impact of increases in leaf-level carbon dioxide (CO2) on evaporation, temperature and other land surface quantities. Fifty-one realizations were run, for each of four Januarys and four Julys for CO2 concentrations at leaf-level of 280, 375, 500, 650, 840 and 1,000 ppmv. Atmospheric CO2 concentration was held constant at 375 ppmv in all experiments. Statistically significant decreases in evaporation and increases in temperature occur in specific regions as leaf-level CO2 is increased from 280 to 375 ppmv. These same areas expand geographically, and the magnitude of the changes increase as leaf-level CO2 is increased further suggesting that changes are caused by the increase in leaf-level CO2 and are not internal model variability. As leaf-level CO2 is increased further, larger areas of the continental surface are affected by increasing amounts and a statistically significant change in precipitation is seen. The increase in leaf-level CO2 from 280 ppmv to 375 ppmv causes statistically significant changes in the evaporation over 12% of continental surfaces in July. This increases to 25% at 500 ppmv, 35% at 650 ppmv, 41% at 840 ppmv and 47% at 1,000 ppmv. This affects temperature and rainfall by similar amounts, generally in coincident regions. An analysis of these results over key regions shows that the probability density functions of the latent heat flux and temperature are affected non-uniformly. There is a shift in the latent heat flux probability density function to lower values, mainly through the reduction in the upper tail of the distribution. The temperature probability density function shifts to higher values, mainly through an increase in the upper tail of the distribution indicating that the impact is focussed on extremes. Given that there are a suite of well evaluated land surface models that include the biogeochemical effects of increasing CO2 we suggest that the inclusion of such a model should be a recommended component of climate models used in future assessment reports by the Intergovernmental Panel on Climate Change.  相似文献   

9.
 Wetland regions are important components of the local climate, with their own characteristic surface energy and moisture budgets. Realistic representation of wetlands, including the important vegetation component, may therefore be necessary for more accurate simulations of climate and climate change. However, many land-atmosphere coupled models either ignore wetlands or treat wetlands as bare, water-saturated soil, neglecting the vegetation present within wetland environments. This study investigates the possible response of the mid-Holocene climate of North Africa to changes in orbital forcing, both with and without the presence of wetlands. The location of these wetlands is guided by analysis of paleovegetation and wetland distribution. In this study, the wetland regime in the land surface component of a climate model was modified to incorporate vegetation. Field measurements have shown that vegetation affects water loss associated with evaporation (including transpiration) within a wetland area. Comparisons between non-vegetated wetland and vegetated wetland revealed an increase in local albedo that produced an associated decrease in net radiation, evaporation and precipitation in the vicinity of the wetlands regions. Based on an analysis of the model surface water balance, the calculated area of mid-Holocene wetland coverage for North Africa closely matches the observed. For the North African region as a whole, the effects of adding vegetation to the wetland produced relatively small changes in climate, but local recycling of water may have served to help maintain paleo wetland communities. Received: 16 March 1999 / Accepted: 17 May 2000  相似文献   

10.
A simple parameterization of land surface processes, amenable to the structure of a two-layer soil model, including a representation of the vegetation, has been designed for use in meteorological models. Prior to implementation in a mesoscale model, it is necessary to check the components and to verify the good working order of the parameterization as a whole. The aims of this paper then are: (i) evaluation and a sensitivity study of the various components of the model, specifying the needed accuracy for the parameters; (ii) micrometeorological validation of the model against the HAPEX-MOBILHY data set.First, we present the basic scheme. The focus is on the parameterization of surface resistance, and especially on its relationship with soil moisture.A sensitivity study is then performed through a set of one-dimensional simulations which allow a full interaction between the ground and the atmosphere. Above bare ground, it is shown that both soil texture and initial moisture greatly influence the outcome of the simulation. Latent heat flux ranges from that associated with potential evaporation through a switch-like behavior to that of dry soil. Next, the effects of transpiring vegetation canopies on the physical processes involved and the surface energy balance are examined. The sensitivity of the latent heat flux to changes in the soil and canopy parameters is emphazised; the major influence of the initial mean soil moisture and of the vegetation cover is pointed out. Finally, the evolution of the boundary layer in response to various surface conditions is studied.A validation of the land surface scheme is conducted through daily cycles during cloudless days. Simulated turbulent fluxes are successfully compared to micrometeorological measurements over a maize field at different growth stages. Over a pine forest, the correct simulation of the turbulent fluxes is obtained with an adequate parameterization of the surface resistance accounting for the atmospheric moisture deficit.  相似文献   

11.
Regional climate simulation with a high resolution GCM: surface hydrology   总被引:2,自引:0,他引:2  
Aspects of the surface hydrology of high resolution (T106) versions of the ECHAM3 and ECHAM4 general circulation models are analysed over the European region and compared with available observations. The focus is on evaporation, and surface measurements are shown to be useful for the identification of systematic deficiencies in the regional-scale performance of climate models on an annual and seasonal basis, such as the excessive summer dryness over continents. The annual mean evaporation at the available European observation sites is overestimated by 4 mm/month by the ECHAM3 T106, quantitatively consistent with an overestimated surface net radiation of 4 Wm–2 over Europe. In winter, ECHAM3 shows an overestimated evaporation which compensates for an overestimated downward sensible heat flux. This is primarily related to a too strong zonalisation of the large-scale flow and associated overestimated warm air advection and windspeed. Inaccurate local land surface parameters (e.g. leaf area index, roughness length) are minor contributors to the overestimation. In early summer, the excessive solar radiation at the surface calculated with the ECHAM3 radiation scheme generates a too large evaporation and an excessive depletion of the soil moisture reservoirs. This favours the subsequent excessive summer dryness over Europe with too low values of evaporation, convective precipitation and soil moisture content, leading to a too high surface temperature. In the ECHAM4 T106 simulation, the problem of the European summer dryness is largely reduced, and the simulated evaporation as well as convective precipitation, cloud amount and soil moisture content during summer are substantially improved. The new ECHAM4 radiation scheme appears to be an important factor for this improvement, since it calculates smaller insolation values in better agreement with observations and subsequently may avoid an excessive drying of the soil. Received: 20 September 1995 / Accepted: 10 May 1996  相似文献   

12.
Summary Water stored in the soil serves as a reservoir for the evapotranspiration (ET) process on land surfaces, therefore knowledge of the soil moisture content is important for partitioning the incoming solar radiation into latent and sensible heat components. There is no remote sensing technique which directly observes the amount of water in this reservoir, however microwave remote sensing at long wavelengths (>10 cm) can give estimates of the moisture stored in the surface 5-cm layer of the soil. This approach is based on the large dielectric contrast between water and dry soil, resulting in emissivity changes from 0.96 for a dry smooth soil to less than 0.6.In this paper, basic relationships between soil moisture and emissivity are described using both theory and observations from various platforms. The ability of the approach to be extended to large regions has been demonstrated in several aircraft mapping experiments, e.g., FIFE, Monsoon 90, Washita 92 and HAPEX Sahel. Some results from Monsoon 90 are presented here. Applications of these soil moisture maps in runoff prediction, rainfall estimation, determining the direct evaporation from the soil surface and serving as a boundary condition for soil profile models are presented.With 10 Figures  相似文献   

13.
北京郊区草地夏季能量收支平衡的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
北京郊区地表能量分配可能影响北京地区的天气和气候。为了进一步检验陆面过程模式对北京郊区具有代表性的稀疏草地地表能量分配的模拟能力,利用原版和改进版简化生物圈模式(SiB2,Simple Biosphere Model 2)模拟了2010年7月22日-8月5日期间北京郊区阳坊镇坦克打靶场草地的辐射平衡、能量收支以及地表热通量。并将模拟结果与实际测量的数据进行对比,结果表明:1)原版SiB2低估净辐射11.32%,改进版SiB2则低估净辐射5.81%,主要原因是改进版SiB2更新了土壤热传导率计算方法,从而提高了土壤温度(包括地表温度)模拟结果的精度,进而改善了地表向上的长波辐射模拟结果的准确性;2)改进版SiB2同时改善了感热通量和潜热通量的模拟结果,但是原版SiB2和改进版SiB2均低估了土壤热通量。  相似文献   

14.
This paper explores the relationship between the complexity of the land surface energy balance parameterization and the simulation of means, variances and extremes in a climate model. We used the BMRC climate model combined with the protocol of AMIP-II to perform six ensemble simulations for each of four levels of surface energy balance complexity. Our results were then compared with other AMIP-II results in terms of the mean, variance and extremes of temperatures and precipitation. In terms of the zonally-averaged mean and the maximum temperatures and precipitation, the surface energy balance complexity did not systematically affect the BMRC climate model results. The zonal minimum temperature was affected by the inclusion of tiling and/or a temporally variable canopy conductance. We found no evidence that surface energy balance complexity affected the globally- or zonally-averaged variances. Some quite large differences were identified in the probability density functions of maximum (10 K) and minimum (4 K) temperature caused by surface tiling and/or the inclusion of a time-varying canopy conductance. With these included, the model simulated a higher probability of cooler minima and warmer maxima and therefore a different diurnal temperature range. Adding interception of precipitation led to an increase in the likelihood of more extreme precipitation. Thus, provided interception, surface tiling and a time-variable stomatal conductance are included in a land surface model, the impact of other uncertainties in the parameterization of the surface energy balance are unlikely to limit the use of climate models for simulating changes in the extremes. Most published results indicating changes to precipitation and temperature extremes due to increasing carbon dioxide are therefore unlikely to be significantly limited by uncertainty in how to parameterize the surface energy balance. Given that the variations in surface energy balance complexity included in our experiments approximates the range included in the AMIP-II models, we conclude that it this is unlikely to explain the differences found between the AMIP-II simulations. This does not mean that AMIP-II differences are not caused to a significant degree by differences in their respective LSMs, rather it limits the potential role of the land surface to non-surface energy balance components, or components (such as carbon) that are not considered here.  相似文献   

15.
Soil physical characteristics can influence terrestrial hydrology and the energy balance and may thus affect land–atmosphere exchanges. However, only few studies have investigated the importance of soil textures for climate. In this study, we examine the impact of soil texture specification in a regional climate model. We perform climate simulations over Europe using soil maps derived from two different sources: the soil map of the world from the Food and Agricultural Organization and the European Soil Database from the European Commission Joint Research Center. These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2 °C in mean 2-m temperature and 20 % in precipitation resulting from changes in the partitioning of energy at the land surface into sensible and latent heat flux. Furthermore, we perform additional simulations where individual soil parameters are perturbed in order to understand their role for summer climate. These simulations highlight the importance of the vertical profile of soil moisture for evapotranspiration. Parameters affecting the latter are hydraulic diffusivity parameters, field capacity and plant wilting point. Our study highlights the importance of soil properties for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture and the resulting differences between maps from different sources, efforts to improve existing databases are needed. In addition, climate models would benefit from tackling unresolved issues in land-surface modeling related to the high spatial variability in soil parameters, both horizontally and vertically, and to limitations of the concept of soil textural class.  相似文献   

16.
 A large number of land surface models (LSMs) have been designed for use in atmospheric general circulation models (GCMs) and GCM modellers therefore have a large number of options when selecting an LSM for their GCM. This study provides information to aid LSM design choices. A framework within which sensitivity to LSM design can be tested is presented and a series of experiments carried out to investigate how general aspects of surface energy balance parametrisation affect land-atmosphere evaporation. Firstly, it is shown that a combination of surface energy balance complexity and aerodynamic parametrisation can be used to explain the gross simulation differences obtained in the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS). Secondly, a simple surface energy balance parametrisation with a constant surface resistance is found to be as appropriate as more complex method for simulating annual, monthly and seasonally averaged diurnal cycles of evaporation. However, complex aspects of surface energy balance parametrisation (canopy interception, bare ground evaporation and canopy resistance) are shown to contain substantial geographic and daily functionality that is not present in the simpler parametrisation. Received: 12 June 1998/Accepted: 24 December 1998  相似文献   

17.
 The sensitivity of the hydrological cycle to soil hydrology is investigated with the LMD GCM. The reference simulation includes the land-surface scheme SECHIBA, with a two-reservoir scheme for soil water storage and runoff at saturation. We studied a non-linear drainage parametrization, and a distributed surface runoff parametrization, accounting for the subgrid scale variability (SSV) of soil moisture capacity, through a distribution where the shape parameter was b. GCM results show that the drainage parametrization induces significant reductions in soil moisture and evaporation rate compared to the reference simulation. They are related to changes in moisture convergence in the tropics, and to a precipitation decrease in the extratropics. When drainage is implemented, the effect of the SSV parametrization (b=0.2) is also to reduce soil moisture and evaporation rates compared to the simulation with drainage only. These changes are much smaller than the former, but the sensitivity of the hydrological cycle to the SSV parametrization is shown to be larger in dry periods, and to be enhanced by an increase of the shape parameter b. The comparison of simulated total runoffs with observed data shows that the soil hydrological parametrizations does not reduce the GCM systematic errors in the annual water balance, but that they can improve the representation of the total runoff’s annual cycle.  相似文献   

18.
To investigate the hydrologic changes of climate in response to an increase of CO2-concentration in the atmosphere, the results from numerical experiments with three climate models are analyzed and compared with each other. All three models consist of an atmospheric general circulation model and a simple mixed layer ocean with a horizontally uniform heat capacity. The first model has a limited computational domain and simple geography with a flat land surface. The second model has a global computational domain with realistic geography. The third model is identical to the second model except that it has a higher computational resolution. In each numerical experiment, the CO2-induced change of climate is evaluated based upon a comparison between the two climates of a model with normal and four times the normal concentration of carbon dioxide in air. It is noted that the zonal mean value of soil moisture in summer reduces significantly in two separate zones of middle and high latitudes in response to the increase of the CO2-concentration in air. This CO2-induced summer dryness results not only from the earlier ending of the snowmelt season, but also from the earlier occurrence of the spring to summer reduction in rainfall rate. The former effect is particularly important in high latitudes, whereas the latter effect becomes important in middle latitudes. Other statistically significant changes include large increases in both soil moisture and runoff rate in high latitudes of a model during most of the annual cycle with the exception of the summer season. The penetration of moisture-rich, warm air into high latitudes is responsible for these increases.  相似文献   

19.
本文利用全球三维大气耦合混合层海洋环流模式模拟大气中二氧化碳浓度增加对土壤湿度的影响。敏感试验(2×CO_2)与控制试验(1×CO_2)对照表明,当大气中二氧化碳浓度增加时,全球土壤湿度在各季发生明显变化。其中两半球低纬度地区在冬季土壤温度变温,两半球中纬度地区则在各季土壤湿度变干,北半球高纬度地区土壤湿度在夏季变干,其余各季变温。分析大气中二氧化碳浓度增加造成土壤温度全球变化的可能物理机制表明,地面水循环和热量循环是重要的因素。  相似文献   

20.
Abstract

Second generation land surface schemes are the subject of much development activity among atmospheric modellers. This work is aimed at, among other things, improving the representation of the soil water balance in order to simulate, more properly, exchanges with the atmosphere and to permit the use of model output to generate streamflow for model validation. The Canadian development program is centred on CLASS, the Canadian Land Surface Scheme, developed at Environment Canada. This paper focuses on the improvement of hydrology in CLASS. This was accomplished by designing a two‐way interface to WATFLOOD, a distributed hydrologic model developed at the University of Waterloo. The two models share many features, which facilitated the coupling procedure.

The interface retains the three‐layer vertical moisture budget representation in CLASS but adds three horizontal runoff possibilities. Runoff from the surface water follows Manning's equation for overland flow. Interflow is generated from the near‐surface soil layer using a parametrization of Richard's equation and base flow is produced by Darcian flow from the bottom of layer 3. An approximation of the internal topography of grid elements is used to supply horizontal gradients for the runoff components.

Tests are in progress in four Canadian study areas. Initial results are presented for the summer of 1993 for the Saugeen River in southwestern Ontario. The new scheme produces realistic hydrographs, whereas the old scheme did not. Bare ground evaporation is reduced by about 17% as a consequence of reduced water availability in layer 1. Evapotranspiration is not affected because the rooting depth extends into layer 3, in which soil moisture does not change appreciably with the new scheme. These results suggest that the new scheme improves the representation of streamflow in WATFLOOD/CLASS and of the soil moisture budget in CLASS. Work is in progress to validate this result over basins, such as the BOREAS study watersheds, where both runoff and evapotranspiration measurements are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号