首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mujib watershed is an important groundwater basin which is considered a major source for drinking and irrigation water in Jordan. Increased dependence on groundwater needs improved aquifer management with respect to understanding deeply recharge and discharge issues, planning rates withdrawal, and facing water quality problems arising from industrial and agricultural contamination. The efficient management of this source depends on reliable estimates of the recharge to groundwater and is needed in order to protect Mujib basin from depletion. Artificial groundwater recharge was investigated in this study as one of the important options to face water scarcity and to improve groundwater storage in the aquifer. A groundwater model based on the MODFLOW program, calibrated under both steady- and unsteady-state conditions, was used to investigate different groundwater management scenarios that aim at protecting the Mujib basin. The scenarios include variations of abstraction levels combined with different artificial groundwater recharge quantities. The possibilities of artificial groundwater recharge from existing and proposed dams as well as reclaimed municipal wastewater were investigated. Artificial recharge options considered in this study are mainly through injecting water directly to the aquifer and through infiltration from reservoir. Three scenarios were performed to predict the aquifer system response under different artificial recharge options (low, moderate, and high) which then compared with no action (recharge) scenario. The best scenario that provides a good recovery for the groundwater table and that can be feasible is founded to be by reducing current abstraction rates by 20% and implementing the moderate artificial recharge rates of 26 million(M)m3/year. The model constructed in this study helps decision makers and planners in selecting optimum management schemes suitable for such arid and semi-arid regions.  相似文献   

2.
Groundwater is the most important source of water in meeting irrigation, drinking, and other needs in India. The assessment of the potential zone for its recharge is critical for sustainable usage, quality management, and food security. This study reports alternative mapping of the groundwater recharge potential of a selected block by including large-scale soil data. Thematic layers of soil, geomorphology, slope, land use land cover, topographical wetness index, and drainage density of Darwha block (District Yavatmal, Maharashtra, India) were generated and integrated in a geographic information system environment. The topographic maps, thematic maps, field data, and satellite image were processed, classified, and weighted using analytical hierarchical process for their contribution to groundwater recharge. The layers were integrated by weighted linear combination method in the GIS environment to generate four groundwater potential zones viz., “poor,” “poor to moderate,” “moderate to high,” and “high.” Based on the generated groundwater potential map, about 9830 ha (12%) of the study area was categorized as high potential for recharge, 25,558 ha (31%) as poor to moderate, 33,398 ha (40%) as moderate to high, and 12,565 ha (15%) as poor potential zone. The zonation corresponds well with the field data on greater well density (0.22/ha) and irrigated crop area (27%) in the high potential zone as against 0.02 wells/ha and only 6% irrigated area in the poor zone. The map is recommended for use in regulating groundwater development decisions and judicious expenditure on drilling new wells by farmers and the state authorities.  相似文献   

3.
In recent decades, the high population growth has increased the demand for agricultural lands and products. Groundwater offers reliability and flexibility in access to water for irrigation purposes, especially in arid and semi-arid areas, such as Amol-Babol Plain, Iran. However, the quality and quantity of groundwater may not be suitable for irrigation purposes in all areas due to urbanizations, and intensive agricultural and industrial activities. Groundwater suitability zoning for irrigation purposes could be useful to improve water resources and land use planning, mostly in areas with water scarcity. Therefore, a GIS-based indices method is proposed to assess suitable zones for agricultural activities, integrating the irrigation water quality (IWQ) index and hydrogeological factors. IWQ index was utilized to assess groundwater quality based on salinity hazard, infiltration hazard, specific ions, and trace elements hazards, and miscellaneous effects such as pH, bicarbonate, and nitrate. The potential of the aquifer for irrigation water abstraction was investigated using hydrogeological surveys such as slope angle of the plain, hydraulic conductivity, and aquifer thickness. The groundwater suitability index classified most of the study area (more than 90 %) as “excellent” or “good” suitability zones for irrigation purposes. A limited area of around 5.6 % of the total area has moderate suitability for irrigation purposes due to the Caspian Seawater intrusion and the presence of fossil saline water. The proposed methodology provides useful information in order to allow irrigation management to prevent water and soil deterioration.  相似文献   

4.
Arid to semi-arid regions are characterized by low levels of surface water and low annual precipitation (generally <350 mm/year). In such areas, groundwater must be used to meet all the needs of the population for water. As a consequence, careful management is required to ensure the sustainability of this scarce resource in response to the demands of urban centers, industry, agriculture, and tourism. The concept of the aquifer recharge rate is particularly useful in the quantification of these groundwater resources and can be used to form the basis of a decision support system. This study determined the potential recharge rate in the Haouz aquifer using a multi-criteria analysis that included both the major and minor factors influencing the rate of infiltration of water into the aquifer. The analysis was based on the use of a geographical information system supported by remote sensing techniques to develop thematic data layers. These layers were then used to describe the spatial variation of the factors influencing the recharge rate of the aquifer and were subsequently integrated and analyzed to derive the spatial distribution of the potential recharge. This approach was used to classify the Haouz Plain (Morocco) into three different zones with respect to the recharge rate, with recharge rates ranging from 3.5 to 18.2 %.  相似文献   

5.
Groundwater management is of fundamental importance to meet the rapidly expanding urban, industrial and agricultural water requirements in semi-arid areas. To assess the current rate of groundwater withdrawal and possibility of recharge of potential aquifer in the semi-arid regions is essential for water management. The present study aimed to identify potential area for groundwater recharge structure in the Gwalior area based on land use, rainfall variation, hydrological component and statistical analysis. In this work, a stream survival approach was used for the assessment of water channel by using triangulated network and regression analysis to find out the correlation of individual component with reference to water management. Land use/land cover (LULC) map prepared from multispectral satellite images of the study area and used to validate the hydrological component and the results observed through the regression model shows good correlation. Therefore, immediate and effective water management schemes are required for sustainable water resource development and management in the area.  相似文献   

6.
Groundwater aquifer vulnerability has been assessed by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination using GIS-based DRASTIC model along with solute transport modeling. This work demonstrates the potential of GIS to derive a vulnerability map by overlying various spatially referenced digital data layers (i.e., depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity) that portrays cumulative aquifer sensitivity ratings in Kishangarh, Rajasthan. It provides a relative indication of groundwater aquifer vulnerability to contamination. The soil moisture flow and solute transport regimes of the vadose zone associated with specific hydrogeological conditions play a crucial role in pollution risk assessment of the underlying groundwater resources. An effort has been made to map the vulnerability of shallow groundwater to surface pollutants of thestudy area, using soil moisture flow and contaminant transport modeling. The classical advection-dispersion equation coupled with Richard’s equation is numerically simulated at different point locations for assessing the intrinsic vulnerability of the valley. The role of soil type, slope, and the land-use cover is considered for estimating the transient flux at the top boundary from daily precipitation and evapotranspiration data of the study area. The time required by the solute peak to travel from the surface to the groundwater table at the bottom of the soil profile is considered as an indicator of avulnerability index. Results show a high vulnerability in the southern region, whereas low vulnerability is observed in the northeast and northern parts. The results have recognized four aquifer vulnerability zones based on DRASTIC vulnerability index (DVI), which ranged from 45 to 178. It has been deduced that approximately 18, 25, 34, and 23% of the area lies in negligible, low, medium and high vulnerability zones, respectively. The study may assist in decision making related to theplanning of industrial locations and the sustainable water resources development of the selected semi-arid area.  相似文献   

7.
Groundwater is a dynamic and replenishable natural resource. The numerical modeling techniques serve as a tool to assess the effect of artificial recharge from the water conservation structures and its response with the aquifers under different recharge conditions. The objective of the present study is to identify the suitable sites for artificial recharge structures to augment groundwater resources and assess its performance through the integrated approach of Geographic Information System (GIS) and numerical groundwater modeling techniques using MODFLOW software for the watershed located in the Kodaganar river basin, Dindigul district, Tamil Nadu. Thematic layers such as geology, geomorphology, soil, runoff, land use and slope were integrated to prepare the groundwater prospect and recharge site map. These potential zones were categorized as good (23%), moderate (54%), and poor (23%) zones with respect to the assigned weightage of different thematic layers. The major artificial recharge structures like percolation ponds and check dams were recommended based on the drainage morphology in the watershed. Finally, a threelayer groundwater flow model was developed. The model was calibrated in two stages, which involved steady and transient state condition. The transient calibration was carried out for the time period from January 1989 to December 2008. The groundwater model was validated after model calibration. The prediction scenario was carried out after the transient calibration for the time period of year up to 2013. The results show that there is 15 to 38% increase in groundwater quantity due to artificial recharge. The present study is useful to assess the effect of artificial recharge from the proposed artificial structures by integrating GIS and groundwater model together to arrive at reasonable results.  相似文献   

8.
Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R2=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm3).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm3)and ground water boundary flow(annually 0.68 Mm3).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.  相似文献   

9.
吉林省西部是我国主要粮食产区,但区内农业水利规划管理同时面临潜水资源与生态环境双重风险。近20年来,区内曾尝试多种水资源利用模式,但缺少不同模式应用效果的定量化对比。文章建立了不同水资源利用模式,对比分析各模式的水资源与次生盐碱化风险。以洮儿河流域为例,采用循环神经网络预测2019—2023年该地区大气降水和地表水对地下水补给量;通过随机数值模拟预测现状开采、连续干旱、无序开采、地下水库建设、节水灌溉、旱田改水田6种情形下,区内潜水水位空间分布特征。以防止次生盐碱化为目标,定义水位埋深上限为1 m;以含水介质厚度为参考,定义水位埋深下限为12 m。遴选适合吉林省西部地区地下水资源可持续利用模式。结果显示:无序开采是导致区内水资源枯竭的主要诱因;地下水库建设和旱改水工程有助于潜水资源维护,但长期运行可加剧生态环境风险。节水灌溉(净采强度为2.0×108~3.0×108 m3/a)是降低区内水资源风险和生态环境风险的最佳方式。文章采用的神经网络—随机模拟分析方法成功预测了地下水位变化驱动因子和地下水位中长期变化趋势,为我国干旱半干旱地区潜水资源利用方案制定提供了新方法。  相似文献   

10.
The impact of glaciation cycles on groundwater flow was studied within the framework of nuclear waste storage in underground geological formations. The eastern section of the Paris Basin (a layered aquifer with impervious/pervious alternations) in France was considered for the last 120 ka. Cold periods corresponded with arid climates. The issue of talik development below water bodies was addressed. These unfrozen zones can maintain open pathways for aquifer recharge. Transient thermal evolution was simulated on a small-scale generic unit of the landscape including a “river” and “plain”. Coupled thermo-hydraulic modeling and simplified conductive heat transfer were considered for a broad range of scenarios. The results showed that when considering the current limited river dimensions and purely conductive heat transfer, taliks are expected to close within a few centuries. However, including coupled advection for flows from the river to the plain (probably pertinent for the eastern Paris Basin aquifer recharge zones) strongly delays talik closure (millennium scale). The impact on regional underground flows is expected to vary from a complete stop of recharge to a reduced recharge, corresponding to the talik zones. Consequences for future modeling approaches of the Paris Basin are discussed.  相似文献   

11.
Groundwater is the most economic natural source of drinking in urban and rural areas which are degraded due to high population growth and increased industrial development. We applied a GIS-based DRASTIC model in a populated urban area of Pakistan (Peshawar) to assess groundwater vulnerability to pollution. Six input parameters—depth to phreatic/groundwater level, groundwater recharge, aquifer material, soil type, slope, and hydraulic conductivity—were used in the model to generate the groundwater vulnerable zones. Each parameter was divided into different ranges or media types, and ratings R?=?1?–?10 were assigned to each factor where 1 represented the very low impact on pollution potential and 10 represented very high impact. Weight multipliers W?=?1?–?5 were also used to balance and enhance the importance of each factor. The DRASTIC model scores obtained varied from 47 to 147, which were divided into three different zones: low, moderate, and high vulnerability to pollution. The final results indicate that about 31.22, 39.50, and 29.27% of the total area are under low, moderate, and high vulnerable zones, respectively. Our method presents a very simple and robust way to assess groundwater vulnerability to pollution and helps the decision-makers to select appropriate landfill sites for waste disposals, and manage groundwater pollution problems efficiently.  相似文献   

12.
The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30–85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 ? concentration is high in shallow irrigation wells, and F? is high in deeper wells. Positive correlation is observed between F? and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.  相似文献   

13.
Recharge to an aquifer can be estimated by first calculating the effective rainfall using a soil moisture budgeting technique, and then by applying a recharge coefficient to indicate the proportion of this effective rainfall that contributes to groundwater recharge. In the Republic of Ireland, the recharge coefficient is determined mainly by the permeability and thickness of the superficial deposits (subsoils) that overlie the country’s aquifers. The properties of these subsoils also influence groundwater vulnerability, and a methodology has been developed for determining the recharge coefficient using the groundwater vulnerability classification. The results of four case studies have been used to develop a quantified link between subsoil permeability, aquifer vulnerability, recharge and runoff. Recharge and runoff coefficients are each classed into three groupings: high, intermediate and low. A high recharge coefficient equates to a low runoff coefficient, and vice versa. A GIS-based tool enables preliminary estimates of recharge to be made using these recharge coefficient groupings. Potential recharge is calculated as the product of effective rainfall and recharge coefficient. The actual recharge is then calculated taking account of the ability of the aquifer to accept the available recharge. The methodology could be applied to other temperate climate zones where the main aquifers have a substantial covering of superficial deposits.  相似文献   

14.
Modelling of ground water recharge-potential in hard-rock areas principally aims at water-resource evaluation. Various techniques are available to assess recharge-potential, and their capability in estimating recharge is also variable. However, the water level fluctuation method is found capable in computing actual ground water recharge. Demarcation of ground water recharge-potential zones in arid and semi-arid regions is of great importance for human survival and sustainable development. Remote sensing and geographic information systems (GIS) techniques have been widely used by numerous researchers for qualitative assessment of ground water potential of a basin or terrain. In the present study, a GIS-based water table fluctuation method has been attempted for quantitative modelling of ground water recharge of the hard-rock Aravalli terrain. This GIS-based model is further used to evaluate recharge-potential of the terrain by integrated assessment of infiltration capacity, normal rainfall, and its cumulative frequency.  相似文献   

15.
Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (>?100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (>?25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.  相似文献   

16.
《地学前缘(英文版)》2020,11(5):1805-1819
In Punjab(Pakistan),the increasing population and expansion of land use for agriculture have severely exploited the regional groundwater resources.Intensive pumping has resulted in a rapid decline in the level of the water table as well as its quality.Better management practices and artificial recharge are needed for the development of sustainable groundwater resources.This study proposes a methodology to delineate favorable groundwater potential recharge zones(FPRI) by integrating maps of groundwater potential recharge index(PRI) with the DRASTIC-based groundwater vulnerability index(VI).In order to evaluate both indexes,different thematic layers corresponding to each index were overlaid in ArcGIS.In the overlay analysis,the weights(for various thematic layers) and rating values(for sub-classes) were allocated based on a review of published literature.Both were then normalized and modified using the analytical hierarchical process(AHP) and a frequency ratio model respectively.After evaluating PRI and FPRI,these maps were validated using the area under the curve(AUC) method.The PRI map indicates that 53% of the area assessed exists in very low to low recharge zones,22% in moderate,and 25% in high to excellent potential recharge zones.The VI map indicates that 38% of the area assessed exists in very low to low vulnerability,33% in moderate,and 29% in high to very high vulnerability zones.The FPRI map shows that the central region of Punjab is moderately-to-highly favorable for recharge due to its low vulnerability and high recharge potential.During the validation process,it was found that the AUC estimated with modified weights and rating values was 79% and 67%,for PRI and VI indexes,respectively.The AUC was less when evaluated using original weights and rating values taken from published literature.Maps of favorable groundwater potential recharge zones are helpful for planning and implementation of wells and hydraulic structures in this region.  相似文献   

17.
Groundwater use in India, and many developing countries, is linked to livelihood and well-being of village communities. It is, therefore, important to characterise groundwater behaviour and resilience and identify strategies that will help to improve the sustainability of groundwater supplies. The concept of Standardised Precipitation Index (SPI) has been widely used for analysing rainfall drought. In this study, we adapt SPI to understand watertable fluctuations and assess resilience of groundwater supplies vis-à-vis rainfall variability from one year to the next. The modified SPI, called Groundwater Resilience Index (GRI), represents a normalized continuous watertable elevation variability function. The index is applied to two districts, viz., Udaipur and Aravalli in Rajasthan and Gujarat, India, respectively, to assess its usefulness. To evaluate the association of rainfall variability with groundwater depth fluctuation, SPI was also calculated. The study showed that GRI varies less than SPI, indicating that groundwater availability is less variable than the rainfall in both districts. This means that groundwater increases reliability of water supply for irrigation in both districts. The estimated SPI and GRI at 6-month intervals for the study period show that even though the groundwater is not stressed (normal condition in 75% of the months observed), there is variation in resilience of the aquifer system to drought and extreme events. Overall, the study indicated that the proposed GRI can be a useful tool for understanding watertable fluctuations and assessing groundwater resilience, especially to prioritise areas for groundwater recharge when funds for recharge works are limited.  相似文献   

18.
The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.  相似文献   

19.
In arid and semi-arid zones,water is the most vulnerable resource to climate change.In fact,various techniques such as artificial recharge are adopted to restore aquifers and to ensure aquifer sustainability in relation to the accelerated pace of exploitation.Morocco is a Mediterranean country highly vulnerable to climate change,many of its main aquifers are subjected to excessive drawdowns.This technique is practiced to increase potentiality of these aquifers.In the Northwestern area of Morocco,the significant development experienced by Tangier City in the industrial,tourism,and commercial sectors will lead to increased water requirements-up to 5 067 L/s(159.8 mm^3)by 2030.However,the Charf El Akab aquifer system,subject to artificial recharge,is the only groundwater resource of Tangier region;hence,a rational management context is needed to ensure aquifer sustainability,and optimized exploitation under the background of differing constraints,such as increased water requirements,and climate change impacts.This work aims to respond,for the first time,to the Charf El Akab aquifer overexploitation problem,and to evaluate the future scenarios of its exploitation in the event of failure of one of the superficial resources.This work also presents a synthesized hydrodynamic modeling based on the results of the numerical simulations carried out using Feflow software for 2004(date of cessation of injections)and 2011(date of resumption of these facilities),making it possible to evaluate the impact of the artificial recharge on the piezometric level of the aquifer on a spatiotemporal scale.Finally,the exploitation scenarios have shown that the aquifer of Charf El Akab will not adequatly provide for the region's water requirements on the future horizon,entailing an optimal management of water resources in the region and an intentionally increased recharge rate.  相似文献   

20.
Groundwater is of fundamental significance for human society,especially in semi-arid areas in China.However,due to the fast social and economic development,China has been suffering from the shortage of water resource.In this situation,managed aquifer recharge(MAR)was considered to be an effective measure for the sustainable management of groundwater resources.Since 1960 s,China successfully implemented many MAR schemes for different purposes such as restoration of groundwater tables,prevention of seawater intrusion,increasing urban water supplies and controlling land subsidence.From those successful experiences China developed a scientific and applicable system to implement MAR project.However,there were still many challenges in this field,for example,treated waste water had been barely used for recharge.The present review summarized the achievements in MAR applications in China as well as the associated challenges within the past 55 years before the year 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号