首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前多数研究直接将大气环流模式(GCM)获得的气候要素输入水文模型或者系统动力学模型评价气候变化所引起的风险,而忽视了一些重要统计要素的实际影响。针对目前研究存在的问题,利用随机模型产生大量模拟数据并输入到关于水资源系统的系统动力模型,通过评价指数和模拟数据间的统计关系建立"气候响应模型",最终利用多种大气环流模式来进行风险评价。通过A2气候变化情景下36种GCM对美国麻州Quabbin水库未来两个时段2036—2065年和2066—2095年由气候变化引起的风险进行评价。结果表明,在1950—1999年流域净流量年际方差100%~140%范围内,2036—2065年的风险为0.25~0.30,2066—2095年的风险为0.30~0.45。  相似文献   

2.
气候变化对中国水资源情势影响综合分析   总被引:27,自引:4,他引:23       下载免费PDF全文
介绍了近年在气候变化对中国水资源影响研究方面的若干进展。研究表明,中国水资源问题的产生不仅与人口和社会经济快速发展有联系,更与气候环境的显著变化密切相关;未来的气候变化将会导致一些流域水资源更加短缺和洪涝灾害更加频繁,对流域水资源和可持续发展产生重要影响;在流域水资源综合规划与管理中,应十分重视气候变化的影响问题。  相似文献   

3.
4.
气候变化下水资源脆弱性的适应性管理新认识   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变化下的水资源脆弱性和适应性管理研究成为全球和国家应对气候变化和保障水资源安全重点关注的问题,也是中国可持续发展面对的重大战略问题。介绍了水资源脆弱性和适应性管理的国内外最新研究进展;针对国家重大需求和国际科学前沿问题,综述了气候变化下水资源脆弱性和适应性管理存在的问题与挑战。提出了气候变化下水资源脆弱性与适应性管理理论与方法研究以应对气候变化的无悔为准则,与社会经济可持续发展、成本效益分析、利益相关者的多信息源的分析与综合决策相结合为原则,对适应性管理与脆弱性组成的互联互动系统及其风险与不确定性进行分析的新认识。  相似文献   

5.
Windblown dust originating in China and Mongolia causes health effects and agricultural damage in its source areas and causes Asian dust events in Japan. An early warning system that could be combined with weather forecasts would be helpful in preventing serious damage. However, it is difficult to specify source areas of dust with current dust modeling systems because land surface information, including vegetation coverage and land surface soil water content, is inadequate. To find and monitor dust source regions, a semi-real-time dust erodibility map was developed based on MODIS satellite data that focuses particularly on the threshold wind speed in a target area of northeast Asia including China and Mongolia (35°–50°N, 75°–120°E). The mapping system incorporates satellite data on snow cover, areas of frozen soil, surface soil water content, and vegetation cover.  相似文献   

6.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   

7.
8.
气候变暖会加剧青藏工程走廊多年冻土区融沉灾害的发生,威胁重大工程的安全运营. 选取冻土体积含冰量和活动层厚度变化量为指标,借助ArcGIS软件,采用融沉指数模型对青藏工程走廊融沉灾害做出了区划. 结果表明:在未来50 a,青藏工程走廊内融沉灾害在A1B和A2情景下主要为中高风险性,在B1情景下主要为中低风险性. 高风险区主要分布在楚玛尔河高平原、五道梁和开心岭等高温高含冰量冻土区.  相似文献   

9.
Yang  Xiao-Hua  Sun  Bo-Yang  Zhang  Jian  Li  Mei-Shui  He  Jun  Wei  Yi-Ming  Li  Yu-Qi 《Natural Hazards》2015,76(1):63-81

Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Water resources system is a complex uncertain system under climate change which is of vulnerability. But water resources system vulnerability research is relatively weak. In this study, we present a multifunctional hierarchy indicator system for the performance evaluation of water resources vulnerability (WRV) under climate change. We established an evaluation model, i.e., analytic hierarchy process combining set pair analysis (AHPSPA) model, for assessing WRV, in which weight is determined by the analytic hierarchy process (AHP) method and the evaluation degrees are determined by the set pair analysis (SPA) theory. According to the principle of scientificalness, representative, completeness and operability, the index systems and standard of water resources vulnerability evaluation are established based on the analysis of sensibility and adaptability which include five subsystems: climate change, water resources change, social and economic infrastructure, water use level and water security capability. The AHPSPA model is used to assess water resource vulnerability in Beijing with 26 indexes under eight kinds of future climate change scenarios. Certain and uncertain information quantity of the WRV is calculated by connection numbers in the AHPSPA model. Results show that the WRV of Beijing is in the middle vulnerability (3 or III) under above-mentioned different climate change scenarios. The uncertain information is between 37.77 and 39.99 % in the WRV evaluation system in Beijing. Compared with present situation, the WRV will become better under scenario I and III and will become worse under scenario II, scenario IV, scenario representative concentration pathways (RCP)2.6, scenario RCP4.5, scenario RCP6.0 and scenario RCP8.5. In addition, we find that water resources change and water use level factors play more important role in the evaluation system of water resource vulnerability in Beijing. Finally, we make some suggestions for water resources management of Beijing.

  相似文献   

10.
The Yuanshui River Basin is one of the most important river basins ensuring food production and livelihoods in the Hunan and Guizhou Provinces of China. Based on digital elevation model, land use, soil, and meteorological data, the soil and water assessment tool was used to analyze the response of water resources in the basin to climate change. Specifically, the monthly runoff from the Yuanshui River Basin was simulated. Runoff measurements from the 1961–1990 series were used to calibrate model parameters, and measurements from the 1991–2010 series were used for model validation. The Nash–Sutcliffe efficiency coefficient, correlation coefficient, and water balance error were used to evaluate the simulation results; the values obtained for these parameters were 0.925, 0.929, and 2.0%, respectively, indicating that the established model can be applied successfully to runoff simulations. To evaluate the effects of climate change and human activities on runoff, 24 different climate scenarios were modeled. By comparing the model simulation results with the baseline scenario, the effects of climate change were analyzed by year, during the dry season, and during extremely dry conditions. The results showed that runoff decreased with increasing air temperature and decreasing precipitation, and that the effects of rainfall on runoff were greater than those of air temperature. Under the same baseline conditions, the effects of climate change on runoff were most pronounced during extremely dry months.  相似文献   

11.
C. Pereira  C. Coelho 《Natural Hazards》2013,69(1):1033-1050
Several coastal zones are facing shoreline retreat problems, losing territory due to energetic sea actions, negative sediment transport balances and climate change phenomena. To deal with this problem, efficient tools are necessary to help decision-makers choose the right procedures to follow. These tools should assess, estimate and project scenarios of coastal evolution in a medium-to-long-term perspective. To perform reliable projections, as many variables as possible should be analysed, and the impact of each of these variables on the shoreline evolution should be understood. This study aimed to analyse three climate change phenomena that are considered the most important in a Portuguese west coast stretch (at Aveiro region). The considered phenomena are the wave height increasing due to storms, the wave direction changes and the sea level rise. A shoreline evolution numerical model, long-term configuration, developed to support coastal zone planning and management in relation to erosion problems was applied. This work defined a methodology for classification of risk areas, considering the uncertainty associated with different wave climate sequences on simulations. As a result, different risk maps according to considered climate change effects were obtained, defining areas of high, medium and low risk of territory loss due to erosion. A generalized erosion tendency and shoreline retreat were observed, particularly in the downdrift side of groins. The sea water level rise showed lower impacts in the shoreline evolution than wave direction changes, or wave height increasing, which presents the highest impact.  相似文献   

12.
13.
全球气候变化对地表水环境质量影响研究进展   总被引:6,自引:0,他引:6       下载免费PDF全文
全球气候变化对水文循环有着重要的影响,由气候变化所引起水资源量的时空分布和水质变化等问题已成为各国科学家和政府关注的热点。目前,气候变化对水资源的影响研究多集中于水量,而有关水质方面的影响研究相对较少。全球气候变化主要包括降水,气温,辐射和风速等气象因子的变化。本文综述了温度的升高、降水的增多或减少、风速和风型的变化、光照时间长短以及辐射增强等变化对地表水环境质量影响的研究进展;阐述了气候变化背景下,气象因子如何通过影响水体中污染物的来源、迁移转化方式、生化反应速率和生态效应等过程而直接或间接对地表水环境质量产生影响。并在对现有研究成果进行总结分析的基础上,从微观、中观和宏观的角度提出了气候变化对水环境质量影响的研究展望。  相似文献   

14.
粮食产量对气候变化驱动水资源变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
水资源是支撑粮食生产的重要因素之一,气候变化驱动下的水资源变化及对粮食产量的影响是当前研究的国际前沿和热点问题。以汾河流域冬小麦和夏玉米2种主要粮食作物为研究对象,利用线性回归、人工神经网络、支持向量机、随机森林、径向基网络、极限学习机等6种机器学习算法构建粮食产量模拟模型,基于气候弹性系数法分析水资源量对气候变化响应关系,在流域尺度上研究粮食产量对气候变化驱动水资源变化的综合响应。结果表明:①机器学习算法能够较好地模拟汾河流域的冬小麦和夏玉米产量;②降水增加10%导致汾河流域水资源量增加19.4%,气温升高1℃导致水资源量减少4.3%;③当降水减少10%~30%时,冬小麦产量减少6.4%~19.3%,夏玉米产量减少4.0%~15.0%;④当气温升高0.5~3.0℃时,冬小麦产量预计增加1.8%~17.1%,夏玉米产量预计增加1.2%~7.9%;⑤汾河流域冬小麦产量对降水和气温变化的敏感性大于夏玉米。相关成果对于区域水资源管理和农业生产策略制定具有重要的科学意义和实用价值。  相似文献   

15.
16.
Climate change is a significant concern for nature conservation in the 21?st century. One of the goals of the 2014 Scottish Climate Change Adaptation Programme is to identify the consequences of climate change for protected areas and to put in place adaptation or mitigation measures. As a contribution to the process, this paper develops a methodology to identify the relative level of risk to nationally and internationally important geological and geomorphological sites in Scotland from the impacts of climate change. The methodology is based on existing understanding of the likely responses of different types of geosite to specific aspects of climate change, such as changes in rainfall, rising sea levels or increased storminess, and is applied to assess the likelihood of damaging impacts on groups of similar geoheritage features in sites with similar characteristics. The results indicate that 80 (8.8%) of the ~900 nationally and internationally important geoheritage sites in Scotland are at ‘high’ risk from climate change. These include active soft-sediment coastal and fluvial features, finite Quaternary sediment exposures and landforms in coastal and river locations, active periglacial features, sites with palaeoenvironmental records, finite or restricted rock exposures and fossils. Using this risk-based assessment, development of indicative geoheritage climate-change actions have been prioritised for these sites. Depending on the characteristics of the sites, management options may range from ‘do nothing’ to rescue excavations and posterity recording. Monitoring is an essential part of the management process to trigger evidence-based interventions.  相似文献   

17.
刘丽颖 《中国岩溶》2020,39(5):714-723
探讨气候变化下水资源安全的时空演变规律,对喀斯特地区水资源安全的保障有着重要意义。文章采用GA-BP神经网络模型,研究了贵州省水资源安全的空间分异特征,并分析其对气候要素变化的敏感性。结果表明:(1)研究区水资源安全有较强的空间异质性。2001-2015年,黔南的水资源安全一直是全省最差的地区,贵阳的水资源安全改善最为明显,变化幅度最小的是安顺;(2)当变动率相同时,年平均降雨量的变动对水资源安全的影响最大,其增加10%时水资源安全指数上升0.95%,单位地表水资源量变动的影响其次,单位地下水资源量变动的影响最小;(3)对年平均降雨量变化最为敏感的地区是遵义、毕节、六盘水和黔西南。研究结果可为贵州省水资源的调控和开发提供参考。  相似文献   

18.
《Comptes Rendus Geoscience》2007,339(11-12):721-733
The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies.  相似文献   

19.
Cheng  Kun  Fu  Qiang  Li  Tianxiao  Jiang  Qiuxiang  Liu  Wei 《Natural Hazards》2015,78(1):603-619
Natural Hazards - Agricultural water use plays an important role in maintaining food security. The present paper utilizes an agent-based model of the complex adaptive systems (CAS) theory for the...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号