首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface structures from two different districts of Istanbul, hosting waste and freshwater transmission lines, were imaged by geoelectrical method. The environmental impact on Ka??thane-Terkos freshwater transmission line is one of the issues. That waterline underwent a substantial landslide damage. The previous site selection of Ka??thane-Terkos line was only based on surface geological observations. Even though the pipeline was positioned away from the surface scarps of landslides, the pipes were damaged. To find out the reason, we made some vertical electrical sounding measurements using Schlumberger array in the region. We inverted the electrical sounding data using 2D inversion technique. The final geoelectrical images show main landslide failures, at about 10–30 m depth, which are overlain by debris with a resistivity value of with <6 Ω m. The geoelectrical findings reveal that a buried major failure surrounds the surface landslides behind. Consequently, the water infrastructure remains under the influence of landslide. Our second application site was the area of the Sazl?dere tunnel, which will transfer wastewater, polluting Sazl?dere dam, to the treatment plant. The geoelectrical images along Sazl?dere tunnel route show resistive (<100 Ω m) and moderately conductive (≤50 Ω m) structures along the tunnel axis, representing unaltered to highly weathered rocks, respectively. Furthermore, consecutive hidden fault zones which severely affect the construction process of the tunnel are detected and located.  相似文献   

2.
Three types of hydrothermal alterations are recorded in Wadi El Regeita area, argillic, phyllic, and propylitic. Whole-rock analysis of representative samples of the alteration halo (1) shows a Cu, Au, and Ag content up to 1.7 wt.%, 1.6 g/t, and 4 g/t, respectively; in the alteration halo (2), these metal contents are up to 1.3 wt.%, 1.4 g/t, and 3 g/t, following the same order. The integrated remote sensing and geophysical data, as well as geological field verification, show that Wadi El Regeita area includes promising Cu ores within two hydrothermal alteration haloes. Spatial data analyses of lineaments from Landsat Enhanced Thematic Mapper (ETM) band ratio image (7/5, 5/4, 3/1) reveal the presence of alteration haloes that potentially may host Cu mineralization at south and north of El Regita Cu mine. Gravity interpretation indicates that the surveyed area is dissected by NE–SW fault zones in the central part, near Wadi El Regeita Cu mine. Ground magnetic survey data revealed that the surveyed area includes six magnetic bodies at depths ranging from 32 to 90 m, possibly recording the presence of mineralized and hydrothermally altered andesitic dykes. The half length of these dykes ranges from 600 to 1,070 m; their half thickness from 30 to 123 m and their half width from 48 to 531 m. Dyke locations coincide with surface alteration haloes (1) and (2) as indicated by the ETM band ratio image processing. The final assessment of the area, however, needs more detailed geological and geophysical studies with contributions of remote sensing techniques.  相似文献   

3.
Water resources in the Algerian South are rare and difficult to reach because they are often too deep. This is the case of Guerrara which is characterized by an annual precipitation average of less than 60 mm. The water supply is warranted from groundwater, frequently too deep and badly known. The main purpose of the present study is to determine the geometry of aquifer from geophysical data. Fourteen vertical electrical soundings covering the total surface area were carried out by using an arrangement of electrodes called “Schlumberger array.” The length of the selected transmission line (AB) was 1,000 m, which allowed a vertical investigation reaching up to 160 m of depth. The analysis of the results shows that the prospected zone is characterized by the succession of layers with different electrical resistivities. A sandstone aquifer characterized by resistivities near 100 Ω m overcoming a limestone aquifer stronger with values that exceed 1,000 Ω m, separated by a conductive layer of clay with average resistivity of 15 Ω m. Distribution map of sandstones thickness shows the structural variations of this horizon allowing an estimation of its hydraulic potential.  相似文献   

4.
Natural wetlands are thought to be one of the largest natural sources of atmospheric methane concentrations. Although numerous studies referred to the rate of methane fluxes in different geophysical regions, only a few had estimates of the overall geographical methane emissions in China. This study estimated the spatial variations of annual methane emissions with the pixel size of 1 km × 1 km from natural wetlands, excluding water surface, in China. The natural wetland areas were extracted from the database of the 2000 land covers, and geophysical divisions were used to represent different climate conditions. Methane emission in every geophysical region was calculated based on methane release factors obtained from an extensive overview of published literature and the data of elevation and vegetation proportion. The estimated annual methane emissions ranged from 0 to 5,702.8 kg per pixel within the area of 1 km2, and the spatial variation in methane emissions was strongly correlated with proportion of wetlands in the area. The total methane emission from natural wetland in China ranged from 3.48 to 7.16 Tg (terrogram, unit of weight) per year, with the mean value of 4.94 Tg per year, based on the area 133,000 km2 of natural wetlands. Specifically, the wetland in Northeast China had the highest contribution in China (39 %). Inner Mongolia and Qinghai-Tibet highland represented for about 25 and 21 %, respectively. The other 15 % of the measured methane was released in Northwest, North, Central, and South China.  相似文献   

5.
Multichannel analysis of surface waves (MASW) survey was conducted to measure shear wave velocities in order to ascertain the likely causes of road failure along LASU-IBA expressway in Alimosho local government area, Lagos, Nigeria. MASW data were acquired along the express road. The acquired dataset was processed and transformed into two-dimensional structure reflective of depth and surface wave velocity distribution within a depth of investigation using SurfSeis software. The MASW shear wave velocity data were compared to geophysical data that was acquired along the same profile. The comparison was also done with geotechnical data that had been acquired prior to the study some meters away from the study area. The correlation between N values to measured shear wave velocity using MASW was generated. The comparison illustrates the accuracy and consistency of MASW-derived shear wave velocity profiles. We concluded that (1) the low-velocity region that varies between 100 and 250 m/s at surface down to 4 m beneath the surface is characterized by loose/peat materials and may have been responsible for the road failure within the study area; this region depicts a very loose compaction area. (2) The MASW technique is a time–cost-effective tool for obtaining reliable shear wave velocity profiles, and (3) the MASW is particularly attractive in areas that cannot be readily assessed by other geophysical and geotechnical tools.  相似文献   

6.
Surface geophysical methods were used to determine the locations of fracture zones in part of the hard rock area in Sonebhadra District of Uttar Pradesh, India. The survey comprises three DC resistivity profile using the gradient profiling technique and ten very low frequency electromagnetic (VLF-EM) traverses profiles. The methods were used over survey lines extending between 200 and 400 m; the results were correlated to locate fracture zones for the purpose of groundwater exploration. Qualitative interpretation of the VLF-EM was carried out using Fraser and Karous–Hjelt filters. The result of the interpretation revealed a number of subsurface zones with high real component current density that defines the potential subsurface features (probably fracture zones). The subsurface feature concurred with the low resistive zones indentified from the gradient resistivity profiling. The zones where further inferred quantitatively using data obtained from DC resistivity sounding at some selected anomalous points. The result obtained proves the efficiency of integrating both methods in detecting fractures zones in hard rock area.  相似文献   

7.
This study was performed at an area of 50?×?48 m2 being defined as a new settlement in the northeast of Sivas. In the study, the discontinuities that are not deep and their geophysical characteristics were examined by the GPR and MASW methods. For interpretation, GPR cross sections were prepared as 2D–3D, and MASW cross sections were prepared as 2D. As for geophysical cross sections, about 10 m depth was examined. It was understood that the reflections observed in the form of hyperbolas in GPR cross sections correspond to areas having low S wave velocity (Vs) in MASW cross sections. It was understood that the S wave velocities are lower than 653 m/s, that the seismic velocities in between 653 and 275 m/s indicate partially deteriorated areas and that the S wave velocities of unweathered gypsums are higher than 1275 m/s at these low-velocity zones. Thus, it was thought that the fill material that may arise in the fracture, crack and deterioration areas arises from intercalation and clastic gypsum units, and that it plays a role in having low value S wave velocities. In all the geophysical cross sections, it was understood that the structures with gypsum are intense at the initial 5 m. And a fracture at the south of the study area, that it was estimated might be longer than 40 m, was determined as the largest gypsum structure. It was understood that this fracture starts from a depth of about 5 m in the west and that it slopes down to 7 m depth in the east. According to these results, it was understood that the damage amount arising in time in the gypsum structures from the effect of water may increase, the study area was defined as risky, and the required importance should be attached to these structures especially in foundation engineering.  相似文献   

8.
Geophysical methods—seismic refraction (SRFR), electrical resistivity tomography (ERT), and microgravity—were applied to the Dead Sea (DS) sinkhole problem in the Ein Gedi area at the earlier stage of the sinkhole development (1998–2002). They allowed determining the sinkhole formation mechanism and localizing the sinkhole hazardous zones. The SRFR method permitted to delineate the underground edge of a salt layer at the depth of 50 m. The salt edge was shaped like the sinkhole line on the surface. It was concluded that the sinkhole development is linked to the salt edge. Geoelectrical quasi-3D mapping based on the ERT technique detected large resistivity anomalies with 250–300 m2 diameter and 25–35 m deep. The Ein Gedi area has been also mapped by the use of Microgravity method. The residual Bouguer gravity anomaly map shows negative anomalies arranged along the edge of the salt layer. Those gravity anomalies overall are very similar in plan to the resistivity distribution in this area. The results of forward modeling indicate that both high resistivity and residual gravity anomalies are associated with a subsurface decompaction of the soil mass and deep cavity at the sinkhole site. Following monitoring of the sinkhole development carried out by the Geological Survey of Israel confirmed our suggestions. The drilling of numerous boreholes verified the location of the salt edge. Geographical Information System (GIS) database testifies that during 2003–2009 new sinkholes are continuing to develop along the salt edge within a narrow 50–100 m wide strip oriented approximately in north–south direction (slightly parallel to the shoreline). No promotion in west–east direction (perpendicularly to the DS shoreline) was observed in Israel. Collapse of sinkholes and their clustering have been occurred within the area of high resistivity anomaly and negative residual gravity anomaly. Similar studies carried out at the Ghor Al-Haditha area (Jordan) have shown that sinkholes there are also arranged along the winding line conforming to the salt edge. In this area sinkholes are slowly moved to the Dead Sea direction. Results of geophysical studies in numerous DS sites indicate similar sinkhole development. It allowed generating of the sinkhole formation model based on ancient (10,000–11,000-year old) salt belt girding the Dead Sea along its shores  相似文献   

9.
The Bàlitx area is located on the steep coastal side of the Tramuntana Range (Majorca), a mountainous region which was declared a World Heritage Site by UNESCO in 2011 in the cultural landscape category. The Bàlitx site was occupied by farming areas with dry stone constructions and water storing systems of both Roman and Islamic origin. The coastal landscape is characterised by a large fault escarpment of up to 260 m in height. Lateral spreading processes are favoured by local stratigraphy and tectonics in an energetic coastal dynamics scenario. Block spreading morphologies are identified along the escarpment, with large, rocky blocks of volumes up to 60?×?103 m3 moving very slowly until their collapse. Consequently, a thick and highly karstified breccia deposit is accumulated at the base of the scarp. The lowest, oldest breccia outcrop has been dated (Th/U), and an age of 82.5?±?5.6 kyr was obtained, reflecting the time span this process has been active. Additionally, numerous geomorphological slope features are identified in the area: landslides, rockfalls, and, more specifically, long and deep cracks in the hanging wall block of the fault, which also reveal active lateral spreading processes. Coastal dynamics have been investigated by interpreting offshore geophysical studies, bathymetry data and borehole information to determine the role of wave energy in the stability of the slope. Additionally, 14 SAR images from the ALOS PALSAR satellite have been exploited for the present work, covering a period spanning from 2007 to 2010, an anomalous rainy period in the region. Images were processed using the Persistent Scattered Interferometry (PSI) technique. PSInSAR results reveal that the rate of movement for the Bàlitx lateral spreading is extremely low (??5.2 mm/year on average), but major activity has been detected in the NE sector, where velocity rates can reach values of up to ??16 mm/year Coastal dynamics in the area can explain this, as a small island generates wave refraction and reflection determining more intense erosive processes in the NE part, which lead to a greater destabilising effect on the slopes. A simple vulnerability approach has been developed to take the elements of cultural heritage into account. Vulnerability increases from SW to NE, in accordance with landslide activity. The Bàlitx case study could provide a testimony to the effects of mass movements and coastal dynamics in an exceptional example of Mediterranean agricultural landscape.  相似文献   

10.
Spatial distributions of vegetation cover are closely related to topographical characters like slope, steepness, soil types, elevations, etc. In seismo-tectonic regions fault lines or tectonic lineaments are the most prominent surface signatures that can be reflected by vegetation distribution as tectonic displacement causes the change of topographical parameters. In the present study a part of northern Baromura hill (between 23º 42′ N to 23º49 N latitudes and 91º30 E to 91º36 E longitudes), which is considered as an active seismo-tectonic region of Tripura as well as northeast India, was selected for assessing the relationship between spatial variation of plant cover and topography. Geologically, Baromura hill is a north–south extended fold belt and formed by late Tertiary to Quaternary depositions. Evidences show that tectonic events played very important role in landform evolution of this area during the geological past. In this research an extensive fieldwork was conducted in the study area to understand the geomorphic and vegetation signatures and their environmental relationships. Various spectral resolutions of Landsat ETM+ were used for digital analysis. To analyse the vegetation character of this area digital operation was done within the spectral range 0.63–1.75 μm. Band 4 and band 3 were used for NDVI operation. Band 5 or mid-wave infrared band was classified in unsupervised mode to understand the range of plant water in the study area. Overlay operation with those operated images shows the spatial distribution pattern of vegetation cover indicates the landform condition. Three clear tectonic lineaments (faults) were detected from the digital study in on the northern part Baromura hill. Structural conditions of those fault lines were verified by geo-electrical survey during fieldwork. GPS tool was used for fixing the ground control points. Resistivity characters of the study area assessed from VES profile strongly supports that vegetation cover analysis from remotely sensed data within 0.63–1.75 μm spectral ranges can be a very useful tool for detecting surface tectonic signatures of the landform.  相似文献   

11.
The Middle East and North Africa (MENA) region is the world’s most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region’s total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region’s large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region’s groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.  相似文献   

12.
The water table of Teboursouk basin (NW Tunisia), logged in the Eocene limestone, is a relevant hydrological target considering its relatively important volume and good chemical quality. The assessment of its geohydrological potential requires the compilation of geological, stratigraphic, geophysical studies and drilling data. Well logging aims characterization of the petrophysical parameters of aquifer formations as well as possible correlations between boreholes. The interpretations show high variabilities in porosity (from 4 to 42 % related to fracturing) of limestone formation and in salinity (0.7 to 2.3 g/l) of the water table; the latter increase to the Southeast of the basin, which is contaminated by the salt formation. Over 54 Schlumberger electrical soundings (AB?=?400 m) were performed. The interpretation of resistivity distributions at various depths is based on apparent resistivity maps corresponding to different AB spacings. Measured resistivity values were one-dimensionally interpreted. Drilled boreholes and the position of some electrical soundings on geological outcrops have been helpful for electrical data calibration. The generalization of the calibration for all electrical soundings show that the limestones are characterized by high and very contrast resistivity (ρ >22 Ωm), a depth ranging from 0 to 100 m and a thickness of about 70 m, exceeding 200 m per place. These variations are due to the presence of faults which are affecting the basin, and are connected to Eocene lands behind. The compilation of data led to evaluate approximately the groundwater reserves of Teboursouk basin to 130 million of cubic meter.  相似文献   

13.
Andrei Bala 《Natural Hazards》2014,72(3):1429-1445
Bucharest, the capital city of Romania, with more than 2 million inhabitants, is considered as a natural disaster hotspot by a recent global study of the World Bank and the Columbia University (Dilley M et al. Natural disaster hotspots: a global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University, Washington, DC in 2005). Therefore, it is classified as the second metropolis in Europe, after Istanbul, subjected to important losses in the case of a destructive Vrancea earthquake with moment magnitude greater than seven. Four major earthquakes with moment magnitudes between 6.9 and 7.7 hit Bucharest in the last 68 years. The most recent destructive earthquake on March 4, 1977, with a moment magnitude of 7.4, caused about 1,500 casualties in the capital alone. All disastrous intermediate-depth earthquakes are generated within a small epicentral area—the Vrancea seismogenic region—about 150 km northeast of Bucharest. Thick unconsolidated sedimentary layers below Bucharest amplify the arriving seismic waves causing severe destruction. Ten 50-m-deep boreholes are drilled in the metropolitan area of Bucharest in order to obtain a unique, homogeneous dataset of seismic, soil-mechanic and elasto-dynamic parameters. Cores for dynamic tests were extracted, and vertical seismic profiles were performed to obtain an updated site amplification model related to earthquakes waves. The boreholes are placed near former or existing seismic station sites to allow a direct comparison and calibration of the borehole data with previous seismological measurements. A database containing geological characteristics for each sedimentary layer, geotechnical parameters measured on rock samples, P- and S wave velocity and density for each sedimentary layer is set up, as a result of previous papers with this subject. Direct data obtained by the geophysical methods in the new boreholes drilled in Bucharest City, as well as from laboratory measurements, are used as input data in the program SHAKE2000. Results are obtained in the form of spectral acceleration response, and peak acceleration in depth is computed for every site in which in situ measurements were performed. The acceleration response spectra correspond to the shear-wave amplifications due to the models of sedimentary layers down to (a) 50 m depth; (b) 70 m depth; and (c) 100 m depth. A comparison of the acceleration response spectra obtained by modelling at surface with a real signal recorded at surface is obtained in three sites, as test sites for the three depths considered, in order to calibrate the results obtained by equivalent linear method of the seismic site response.  相似文献   

14.
Leptiminus, a Roman port city on the west coast of Tunisia, North Africa, exported olive oil and a garum fish paste to Rome. Excavations have uncovered many facilities including kilns and a potter's workshop, indicating an extensive ceramic industry. The vessels, manufactured at Leptiminus, included African red‐slip fineware, coarseware, and amphorae. A petrographic study of pottery sherds showed them to contain very similar temper, rounded aeolian sand grains and limestone, but varying in proportions to produce different textures. An investigation of the source of raw materials for the pottery found three distinct types of clay within a 50 km radius of Leptiminus: grey Miocene, brown Pliocene, and green Late Pliocene clay. Statistical analysis of trace element compositions, using induced neutron activation, of clays and sherds showed that the Pliocene brown clay was used to create all types of pottery. The specific clay horizon, used in Roman times, has apparently been removed by quarrying. However, a lateral continuation of this bed was found 7 m beneath the Leptiminus site 290. © 2002 Wiley Periodicals, Inc.  相似文献   

15.
Geoelectrical methods involving electrical resistivity tomography (ERT), self-potential (SP), frequency domain electromagnetic (FDEM), and very low frequency (VLF) methods have been used to provide valuable information in locating a known sulfide ore body in Soap Gulch, Montana. The study develops basis of comparison for the geophysical techniques employed. Ranges of resistivity along the area have been established using interpreted ERT which can help to understand the subsurface distribution of sulfides in the area. A sulfide body was delineated from the survey area corresponding to anomalously low resistivity values on the ERT section, negative SP, and high apparent current density zone in VLF. Depth to the localized ore zone ranges approximately from 10 to 20 m. FDEM data reflect the conductivity distribution of the shallow subsurface (less than 6 m deep); hence, the delineated sulfide zone had minimal contribution to FDEM measurements. The results of the study show that SP, VLF, and ERT methods provide significant information in localizing ore bodies. The survey revealed that the resistivity values obtained from ERT profile corroborate the FDEM, SP, and VLF from the area.  相似文献   

16.
In 373 B.C. an earthquake and seismic sea wave destroyed and submerged Helike, the principal Greek city on the southwestern shore of the Gulf of Corinth. Our sonar survey of the seafloor in the area where ancient sources located Helike, southeast of Aigion, showed no evidence of a submerged city. We concluded that the site must now lie in the alluvial deposits of the adjacent coastal plain. Accordingly, we used bore hole drilling and geophysical techniques to look for buried occupation horizons on land. The bore hole cores yielded numerous ceramic fragments and remains of walls, ranging from near the surface to about 15 m deep, concentrated in an area of some 2 km2 on the upper part of the delta between the Selinous and Kerynites Rivers. Ceramic and organic samples from the cores yielded ages ranging from Byzantine to Early Helladic times. A shallow auger hole brought to light a superb fragment of an architectural terracotta statue from an Archaic building, ca. 600 B.C. Near the center of the ceramic-bearing area, we discovered by magnetometry a large Roman building and began its excavation. It may belong to a Roman settlement that Pausanias visited at the site of Classical Helike. The deeper layers of the excavation yielded black-glazed vase fragments from the 5th century B.C. and potsherds from Protogeometric and Mycenaean times. The overall results suggest that most of the Roman to Classical horizons lie within about 6 m of the surface, whereas Bronze Age horizons range down to 15 m. While we have yet to determine by excavation whether the occupation horizons include the center of a city, this area appears to be a strong candidate for the site of ancient Helike. © 1999 John Wiley & Sons, Inc.  相似文献   

17.
Although the River Nile Basin receives annually ca. 1600 billion cubic meters of rainfall, yet some countries within the Basin are suffering much from lack of water. The great changes in the physiography of the Nile Basin are well displayed on its many high mountains, mostly basement rocks that are overlain by clastic sediments and capped by volcanics in eastern and western Sudan. The central part of the Nile Basin is nearly flat including volcanics in the Bayuda Mountains and volcanic cones and plateaus in southwestern Egypt. The high mountains bordering the Nile Basin range in elevation from 3300 to 4600 m.a.s.l. in the Ethiopian volcanic plateau in the east to ca. 3070 m.a.s.l. in the western Gebel Marra, and 1310 m.a.s.l. in the Ennedi Mountains in northwestern Sudan. In central Sudan, the Nile Valley rises approximately 200–300 m.a.s.l. In Egypt, the River Nile is bounded by the Red Sea Mountains in the east, assuming ca. 1000–2600 m.a.s.l., mostly of basement rocks, which are covered to the north of Aswan by Phanerozoic sediments sloping to the west, passing by the Nile Valley and continuing through the Western Desert. The Phanerozoic cover on both sides of the Nile is known as the Eastern and Western Limestone Plateaus. These plateaus assume elevations varying from 300 to 350 m.a.s.l. near the eastern bank of the Nile to 400–500 m.a.s.l. south Luxor at Esna and west of Aswan. The nearly flat Sahara west of the Nile Valley rises gradually westward until it reaches Gebel Uweinat in the triple junction between Egypt, Sudan, and Libya. Gebel Uweinat has an elevation of 1900 m.a.s.l. sloping northward towards the Gilf Kebir Plateau, which is 1100 m.a.s.l. The high mountains and plateaus in the southern and western Egypt slope gradually northward where the Qattara Depression is located near the Mediterranean coast. The depression is ?134 m.b.s.l., which is the lowest natural point in Africa. All these physiographic features in Sudan and Egypt are related to (i) the separation of South America from Africa, which started in the Late Paleozoic and continued up to the Cretaceous, giving rise to several generally E–W-oriented tectonic features inside Africa, (ii) the uplift of the Red Sea Mountains and their continuation inside Africa resulted in the East African Rift System (EARS), (iii) the Guinea–Nubia Lineament crossing Africa from the Atlantic to the Red Sea where many havoc trends, mostly E–W-trending faults, and uplifted basement features pierce the overlying sediments, (iv) parallel and longitudinal structures associated with volcanic plateaus and cones extend from west Sudan (Gebel Marra) to Ethiopian Plateau, passing by volcanics and plume features in between and the basins in east Africa were subjected to wrench related inversions, and (v) the Sudd linear E–W area stretching more than 1000 km between Gebel Marra in the west, passing by South Sudan and reaching southwestern Ethiopia. Here, fluviatile and subsurface waters led to ponds, lakes, and wet areas that are hard to exploit. The impact of these features led to the present south to north River Nile, but passing by many changes in the direction of its many tributaries and slope reversal of some of the major extinct rivers, either sectors of the main Nile or the rivers once flowed into the main river. The paleoclimatic changes during the Quaternary period: wet and dry have a great effect on the physiographic features and slope reversal of the Nile Basin drainage system.  相似文献   

18.
There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.  相似文献   

19.
The Delijan region of Central Iran is a popular tourist spot due to the occurrence of hot springs and having the greatest geothermal fields in Iran. In the years 2011 and 2012, an integrated geophysical investigation, using magnetic and gravity methods, was conducted over the hot springs in order to characterize geophysical anomaly sources corresponding to the geothermal resources. The results of the geophysical investigations revealed the heat source and the reservoir of the Delijan geothermal system (DGS). Based on results of Euler depth estimation and 3D inversion of magnetic and gravity data, the depths and extension of the discovered structures were determined with a good correlation with the geological information. The results of magnetic interpretation show that the main source (heat source) of the geothermal system is located NE of the Delijan-Abgarm fault (DAf) zone at depths of 2500 to 5000 m, and the results of gravity interpretation show that the reservoir of the geothermal system is located along the DAf zone at depths of 1000 to 4000 m. Also, the horizontal gradients of gravity data reveal complex fault systems which are acting as the preferential paths to circulate the hydrothermal fluids.  相似文献   

20.
Self potential (SP) and electrical resistivity tomography (ERT) methods are used together with the results of groundwater samples hydrogeochemical analysis to assess the impact of the water leak from the landfill garbage site at NamSon located in Northern Hanoi on causing pollution to the surrounding environment and affecting geological structure. Selected survey area covers an area of 180 × 300 m lying in the low land of the NamSon site with a slope ranging about 8 m in direction NW–SE. There are three geophysical measurements lines denoted as T1, T2 and T3. Processing 180 SP data points has allowed to draw maps of equipotential epoch in the two periods in 2015 and 2016. The maps show four zones of SP positive anomalies with maximum amplitudes of about +20 mV where the groundwater flow direction is downward and five zones of SP negative anomalies with minimum values in a range from ?180 to ?260 mV where the groundwater flow direction is upward. Resistivity values of the subsurface layers of soils and rocks have been aquired from 2D inverse model for measuring ERT in March 2015 and March 2016. The results of the ERT allowed to define the low resistivity in the range 15–20 Ωm related to leachate plume from NamSon landfill site. Results of the physico-chemical analysis of groundwater samples from the existing six boreholes show increases in concentration of the measured pollutant parameters indicating contamination of the groundwater as a result of solid waste leachate accumulation. This result is affirmative evidence for the survey results by geophysical technique. The rapid decrease in quality of groundwater over the last year is probably due to the influence of the leachate from the NamSon landfill site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号