首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse87Sr/86Sr and143Nd/144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB (87/Sr86Sr 0.70366;143Nd/144Nd 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher87Sr/86Sr ( 0.7038) and lower 143Nd/144Nd ( 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB.Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high87Sr/86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( εNd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have SrNd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.  相似文献   

2.
Mariana Trough basalt (MTB) glasses from zones of of active seafloor volcanism have incompatible trace element compositions which are intermediate between normal MORB and basaltic rocks from the active northern Mariana Island Arc (MIAB). The chemical variation is observed in trace elemental abundances and ratios such as LIL/LIL and LIL/HFS. MTB glasses with high LIL/HFS and Ba/Sm ratios, and low K/Rb, K/Ba, and Sm/Nd ratios have more enriched Sr and Nd isotopic compositions.Comparison of the SrNd isotopic compositions of MTB and MIAB suggests that the source region within the mantle wedge is heterogeneous. The diverse trace element and isotopic compositions of MTB glasses both within and between dredge sites near 18°N imply small-scale source heterogeneity. Correlation between Sm/Nd and143Nd/144Nd of the MTB glasses is interpreted as due to recent binary mixing, rather than closed system evolution of a common homogeneous source. Mixing of melts at or near the source region between a mantle component with long-term LREE and LIL element depletion (MORB-like) and a relatively enriched component with lower integrated143Nd/144Nd (Arc-like) is suggested by trends of the MTB data on ratio-ratio, ratio-element and element-element plots.  相似文献   

3.
The composition of basalts erupted at the earliest stages in the evolution of a back-arc basin permit unique insights into the composition and structure of the sub-arc mantle. We report major and trace element chemical data and O-, Sr-, Nd-, and Pb- isotopic analyses for basalts recovered from four dredge hauls and one ALVIN dive in the northern Mariana Trough near 22°N. The petrography and major element chemistry of these basalts (MTB-22) are similar to tholeiites from the widest part of the Trough, near 18°N (MTB-18), except that MTB-22 have slightly more K2O and slightly less TiO2. The trace element data exhibit a very strong arc signature in MTB-22, including elevated K, Rb, Sr, Ba, and LREE contents; relatively lowK/Ba and highBa/La andSr/Nd. The Sr- and Nd- isotopic data plot in a field displaced from that of MTB-18 towards Mariana arc lavas, and the Pb-isotopic composition of MTB-22 is indistinguishable from Mariana arc lavas and much more homogeneous than MTB-18. Mixing of 50–90% Mariana arc component with a MORB component is hypothesized. We cannot determine whether this resulted from physical mixing of arc mantle and MORB mantle, or whether the arc component is introduced by metasomatism of MORB-like mantle by fluids released from the subducted lithosphere. The strong arc signature in back-arc melts from the Mariana Trough at 22°N, where the back-arc basin is narrow, supports general models for back-arc basin evolution whereby early back-arc basin basalts have a strong arc component which diminishes in importance relative to MORB as the back-arc basin widens.  相似文献   

4.
Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45' and 21°10'N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (<40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a 'subduction component', and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.  相似文献   

5.
Noble gas elemental and isotopic abundances have been analysed in eight samples of youthful basaltic glass dredged from three different locations within the Lau Backarc Basin: (1) the King's Triple Junction, (2) the Central Lau Spreading Centre at 18°S and (3) the Eastern Lau Spreading Centre at 19°S. Samples from the Lau central and eastern spreading centres have MORB-like helium isotopic ratios of approximately 1.2 × 10−5 (8.5 R/RA). In contrast, the samples from the King's Triple Junction yield helium isotopic ratios averaging 9.4 (±0.8) × 10−6 (6.7 ± 0.6 R/RA), systematically lower than the MORB-like value, which may be reflecting the addition of radiogenic 4He released from the descending slab. Neon isotopic ratios are enriched in 20Ne and 21Ne with respect to atmospheric ratios by as much as 23% and 62% respectively. These observations further confirm that non-atmospheric neon is a common characteristic of samples derived from the mantle. The helium and neon isotopic signatures in the samples can be explained by mixing of a primordial solar component, radiogenic and nucleogenic components produced by radioactive processes inside the Earth, and an atmospheric component. This reconnaissance survey of noble gases in a backarc basin indicates that current volcanism is dominated by magmas from the mantle wedge, a source similar to that from which MORBs are derived. The heavier noble gases (argon, krypton and xenon), however, show more atmosphere-like compositions, either indicating strong interaction of the magmas with the atmosphere or the presence of a recycled component derived from the underlying subducting slab.  相似文献   

6.
Five separate exposures of oceanic basalts were dredged in the vicinity of the Peru-Chile Trench between 9° and 27°S latitude. Each dredge is dominated by abundant pillow basalts. Approximately ten of the most unaltered, glassy and fine-grained samples were selected for detailed chemical and petrographic analyses from each dredge area. All basalts recovered in the Peru-Chile Trench are olivine and quartz-normative tholeiites that are believed to have formed at the now extinct Galapagos Rise 30–50 m.y. ago. Detailed chemical analyses of the basalts, including major and selected trace and rare earth elements, indicate that considerable compositional variability exists both within each of the dredged areas as well as between areas. Most of the inherent chemical variability observed within particular basement sections appears consistent with the concept of temporal evolution of magma bodies at a former spreading center by shallow-level fractional crystallization involving primarily plagioclase and olivine. In contrast, important chemical differences between the dredged areas suggest compositional heterogeneities in the mantle source regions. Our results indicate that although shallow-level fractionation has brought about large changes in composition of basalts in each area, compositional trends are distinct and appear to reflect original mantle-derived compositional differences.  相似文献   

7.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   

8.
Clinopyroxenes separated from two hydrous and four anhydrous ultramafic nodules, selected from a suit of xenoliths from Dreiser Weiher (DW), West Germany, have been studied for Nd and Sr isotopic composition. Nd exhibits a range of εJUV(T) from 0 to +12.4 and 87Sr/86Sr varies between 0.70185 and 0.70400. TICE model ages for anhydrous nodules indicate that the mantle underlying DW was originally depleted ?2 AE ago. Correlation of 143Nd/144Nd with Sm/Nd in this group of samples suggests that a second partial melting event occurred about 560 m.y. ago resulting in LREE enrichment of at least part of the anhydrous mantle. During a later episode, probably contemporaneous with the eruption of the host basalt in Quaternary times, most of the spinel peridotitic upper mantle below DW was modified. This metasomatism led to hydration and incompatible element enrichment of originally anhydrous mantle. The isotopic data for the anhydrous nodules again demonstrate that oceanic-type mantle underlies at least some continental areas. It is apparent that the separation of subcontinental mantle regions from an initially chondritic reservoir may occur in several discrete episodes. However, differing histories of depletion and/or enrichment will produce isotopically distinct mantle reservoirs. Therefore, basalts extracted from these mantle reservoirs will scatter about an average Nd-Sr trend line reflecting the nature of the differentiation in their source regions.  相似文献   

9.
Isotopic data for Sr and Nd from fresh glassy East Pacific Rise basalts suggest that this part of the suboceanic mantle is characterized by subtle but distinct large-scale regional isotopic variability which may reflect differences between cells of the convecting mantle. In spite of a systematic N—S change in spreading rate of a factor of three along the sampled portion of the EPR, no correlation is observed between spreading rate and range of isotopic composition, indicating that the regional variations override homogenization effects which may be correlated with rate of magma generation and hence spreading rate. There is no clear signature in our data of effects from the postulated global “Dupal Anomaly” [30,31]. However, for a restricted ridge segment at the latitude of Easter Island, anomalously high87Sr/86Sr and low143Nd/144Nd occur, coupled with high incompatible element concentrations. These features are most easily understood as being the result of inclusion of a “plume” component in these ridge basalts.  相似文献   

10.
Discrete Quaternary (<400 ka) tephra fallout layers (mostly <1 cm thick) within the siliceous oozes of the central Mariana Trough at 18°N are characterized by medium-K to high-K subalkalic volcanic glasses (K2O=0.8–3.2 wt.%) with high large-ion lithophile elements (LILE)/high-field-strength elements (HFSE) ratios and Nb depletion (Ba/La35; Ba/Zr3.5; La/Nb4) typical for convergent margin volcanic rocks. Compositional zoning within layers ranges from basaltic to dacitic (SiO2=48–71 wt.%; MgO=0.7–6.5 wt.%); all layers contain basaltic andesites. The tephra layers are interpreted as single explosive eruptive events tapping chemically zoned reservoirs, the sources being the Mariana arc volcanoes (MAV) due to their proximity (100–400 km) and similar element ratios (MAV: Ba/La=36±7; Ba/Zr=3.5±0.9). The glasses investigated, however, contrast with the contemporaneous basaltic to dacitic lavas of the MAV by being more enriched in TiO2 (1.2 wt.%; MAV0.8 wt.%), FeO* (10 wt.%, MAV8–9 wt.%), K2O (1.1 wt.%; MAV0.8 wt.%) and P2O5 (0.4 wt.%; MAV0.2 wt.%). (Semi-)Incompatible trace elements (including Rare Earth Elements (REE)) of the basaltic-andesitic and dacitic glasses match those of the dacitic MAV lavas, which became enriched by fractional crystallization. Moreover, the glasses follow a tholeiitic trend of fractionation in contrast to MAV transitional trends and have a characteristic P2O5 trend that reaches a maximum of 0.6 wt.% P2O5 at 57 wt.% SiO2, whereas MAV lavas increase linearly in P2O5 from 0.1 to 0.3 wt.% with increasing silica. Both explosive and effusive series are interpreted to have evolved in common magma reservoirs by convective fractionation. Similar parental magmas are suggested to have separated into coexisting Si-andesitic to dacitic and basaltic melts by in situ crystallization. The differentiated melt is interstitial in an apatite-saturated crystalline mush of plag+px±ox±ol at the cooler chamber margins in contrast to the less differentiated basaltic to basaltic-andesitic magmas, which are not yet saturated in apatite and occupy the chamber interior. Reinjection of interstitial melt into the chamber interior and mixing with larger melt fractions of the interior liquid (mixing ratios about 1: 8–9) can explain the paradoxical behavior of apatite-controlled P and MREE variation in the basaltic andesite glasses and their MAV dacite-like fractionation patterns. The process may also account for the exclusively tholeiitic trend of fractionation of the glass shard series, but in situ crystallization alone cannot cause their absolute enrichment in (semi-)incompatible elements. The newly mixed melt is suggested to form the basaltic end member of the glass shard series. However, it must have become physically separated from the main MAV magma body (possibly by density-driven convective fractionation) in order to allow for further evolution of the contrasting geochemical paths as well as differentiation.  相似文献   

11.
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions.It is apparent that few of the recovered basalts have the geochemical characteristics of typical “depleted” midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge.Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb,87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in “MORB”.The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an “enriched” and a “depleted” source, but rather a range of sources heterogeneous on different scales for different elements — to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.  相似文献   

12.
Forty-two Cenozoic(mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton(the NCC basalts hereafter) were analyzed for platinum-group elements(PGE, including Os, Ir, Ru, Rh, Pt, and Pd). Most of them are alkaline basalts and tholeiites and all of them display little crustal contamination. The total PGE contents of the NCC basalts vary from 0.1 to 0.9 ppb, much lower than those of the primitive mantle values of 23.5 ppb. Primitive mantle-normalized PGE patterns of these basalts define positive slopes and Pd/Ir ratios vary from 1.2 to 25. In terms of both PGE contents and Pd/Ir ratios, they are quite similar to the mid-ocean ridge basalts. There are no obvious negative correlations between PGE vs. Mg O, Ni, and Cu in the NCC basalts, indicating that fractional crystallization of olivine, pyroxene, and/or sulfides during magmatic process cannot be the controlling factor for the observed PGE variation. The observed Pd/Ir variations of the NCC basalts require involvement of non-chondritic heterogeneous mantle sources. Based on Sr-Nd-Pb-Hf isotopic systematics and incompatible-element signatures, a mixing of partial melts from both asthenospheric peridotites and enclosed mantle eclogites at the top of asthenosphere was proposed for the origin of these NCC basalts. The lenses of eclogites are derived from upwelling of recycled continental crust during the westward subduction of the Pacific plate from the ~600 km discontinuity zone. The PGE geochemistry of these basalts provides independent evidence to support this conclusion and the observed Pd/Ir variations may reflect variations in proportions of tapped peridotitic and eclogitic melts.  相似文献   

13.
Natural submarine basalt glasses define liquidus trends which may be summarized as curvilinear regression lines in the normative plagioclase-pyroxene-olivine ternary. Individual basalt suites separated in time or space may differ in major element composition; these differences translate into systematic differences in normative plagioclase, leading to efficient discrimination of individual trends in this ternary. Comparison of two contrasted sets of trends to available experimental and petrographic data confirms the similarity of the natural basalt trends to those predicted by 1-atm experiments, in general agreement with earlier studies based on whole-rock data. These contasted liquidus trends are believed to reflect major element heterogeneity and varying degrees of melting of the mantle source. This major element heterogeneity is not simply correlated with heterogeneity in incompatible trace elements, and like incompatible trace element heterogeneity, there is growing evidence that it may vary abruptly in space and time. The existence of these compositionally contrasted basalt suites must be considered in petrogenetic modelling; specifically, they will introduce scatter in most generalized variation diagrams, and will increase the likelihood of “misfits” in fractionation calculations utilizing parent and residual compositions drawn from different suites.  相似文献   

14.
Abstract ' In situ basalts' represent the ridge magmatism at and close to the ancient trench-trench-ridge triple junction. Such basalts in the Amami, Mugi, and Setogawa accretionary complexes, Southwest Japan, were described and analysed. The geochemical data show that the ' in situ basalts' include all the types of basalts, ranging from alkali basalts and high-alumina basalts to tholeiites, and the compositions tend towards intermediate and silicic rocks. The data also reveal that the ridge basalts are indistinguishable both from the island arc and intraplate basalts, no affinities with mid-ocean-ridge basalts. The sub-ridge mantle adjacent to the triple junction had a component of sub-arc mantle, and this mantle heterogeneity can be generated by the formation of a slab window.  相似文献   

15.
Osmium, strontium, neodymium, and lead isotopic data have been obtained for 30 hand picked samples of basaltic glass from the Pacific, Atlantic and Indian mid-oceanic ridges. Large variations in Os isotopic ratios exist in the glasses, from abyssal peridotite-like values to radiogenic compositions similar to oceanic island basalts (187Os/186Os and 187Os/188Os ratios range from 1.06 to 1.36 and from 0.128 to 0.163, respectively). Os isotopic and elemental data suggest the existence of mixing correlations. This relationship might be ascribed to secondary contamination processes; however, such a hypothesis cannot account for the negative correlation observed between Os and Nd isotopes and the existence of complementary covariations between Os and SrPb isotopes. In this case, OsSrNdPb isotopic variations are unrelated to late post-eruption or shallow level contamination. These relationships provide strong evidence that the Os isotopic composition of the samples are derived from the mantle and thus implies a global chemical heterogeneity of the oceanic upper mantle. The results are consistent with the presence of recycled oceanic crust in the mantle sources of mid-ocean ridge basalts, and indicate that the unique composition of the upper mantle below the Indian ocean results from its contamination by a mantle component characterized by radiogenic Os and particularly unradiogenic Nd and Pb isotopic compositions.  相似文献   

16.
Samples dredged from 2 localities near the crest of the Valu Fa ridge, an active back-arc basin spreading centre in the Lau Basin, consist of highly vesicular lava fragments of andesitic composition. The samples are characterized by rare, euhedral An85 plagioclase phenocrysts in a hypocrystalline groundmass of An60 plagioclase laths, brown glass and rare subhedral clinopyroxene. Samples from within and, to a lesser extent, between the dredge hauls show remarkable isotopic and chemical homogeneity, with: 87Sr/86Sr − 0.70330 ± 2; 143Nd/144Nd − 0.51303 ± 2; 206Pb/204Pb − 18.65 ± 2; 207Pb/204Pb − 15.55 ± 1; 208Pb/204Pb − 38.34 ± 4; Sr − 165 ppm; Rb − 7 ppm; Cs − 0.17 ppm; K − 3300 to 4200 ppm; Ba − 96 ppm; and REE — LREE depleted with 12–18 × chondritic abundances. On Sr-Nd, Pb-Pb and Sr-Pb plots the volcanics lie just within or on the edge of the MORB fields, overlapping with island-arc volcanics from the Marianas and Tonga. Compared with MORB and ocean-island basalts, the samples show alkali-element enrichment relative to REE and higher Cs relative to Rb. The isotopic and geochemical characteristics of the Valu Fa Ridge volcanics clearly indicate a minor, but significant, slab-derived component in the back-arc basin mantle source.  相似文献   

17.
We report new trace element data for an extensive suite of quench basalt glasses dredged from the southern Mid-Atlantic Ridge (MAR) between 40°S and 52.5°S. Ratios between highly incompatible trace elements are strongly correlated and indicate a systematic distribution of incompatible element enriched mid-ocean ridge basalt (MORB) (E-type: Zr/Nb=5.9-19, Y/Nb=0.9-8.4, (La/Sm)n=1.0-2.9) and incompatible element depleted MORB (N-type: Zr/Nb=30-69, Y/Nb=11-29, (La/Sm)n=0.48-0.79) along this section of the southern MAR. A notable feature of N-type MORB from the region is the higher than usual Ba/Nb (4-9), La/Nb (1.2-2.4) and primitive mantle normalised K/Nb ratios (>1). Ba/Nb ratios in E-type MORB samples from 47.5 to 49°S are especially elevated (>10). The occurrence and geographic distribution of E-type MORB along this section of the southern MAR can be correlated with the ridge-centred Shona and off-axis Discovery mantle plumes. In conjunction with published isotope data for a subset of the same sample suite [Douglass et al., J. Geophys. Res. 104 (1999) 2941], a model is developed whereby prior to the breakup of Gondwana and the opening of the South Atlantic Ocean, the underlying asthenospheric mantle was locally contaminated by fluids/melts rising from the major Mesozoic subduction zone along the south-southwest boundary of Gondwana, leaving a subduction zone geochemical imprint (elevated (K/Nb)n and 87Sr/86Sr ratios, decreased 143Nd/144Nd ratios). Subsequent impingement of three major mantle plume heads (Tristan/Gough, Discovery, Shona) resulted in heating and thermal erosion of the lowermost subcontinental lithosphere and dispersal into the convecting asthenospheric mantle. With the opening of the ocean basin, continued plume upwelling led to plume-ridge interactions and mixing between geochemically enriched mantle derived from the Shona and Discovery mantle plumes, material derived from delamination of the subcontinental lithosphere, and mildly subduction zone contaminated depleted asthenospheric mantle.  相似文献   

18.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

19.
In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl? concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl? concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo‐water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.  相似文献   

20.
The Wilson-Morgan hypothesis of hot-spots, characterized by high heat flow, positive gravity anomaly and alkalic volcanism, assumes that such hot-spots are surface expressions of mantle plumes rising by thermal convection. Possible evidence of this mantle upwelling is shown here from textural, structural and chemical aspects of ultramafic xenoliths in alkalic basalts. The xenolith-bearing basalts are constanly associated with Wilson-Morgan hot-spots in the ocean basins and with their continental counterparts in the rift valleys which show extensional tectonics. Most of the xenoliths are considered to be accidental fragments of the lithosphere in the host basalts. One remarkable aspect of xenoliths from all parts of the world is their ubiquitous tectonite fabric. The microstructures of these xenoliths are due to plastic deformation. Some of the xenoliths from Baja California show characteristic deformational features which are also found in the marginal parts of diapirically intruded high-temperature peridotite massifs. A model is proposed for the origin of xenoliths in alkalic basalts by mantle upwelling in which the plastic deformation of the xenoliths reflects this dynamic uprise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号