首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用GDEM温盐资料,采用P矢量方法计算了与温盐资料时间序列相对应的不同季节、不同层深的南海海洋环流及流涡系统,并且得出了相关的结论。  相似文献   

2.
利用高度计海面高度异常数据和非线性1½层约化重力模式研究了南海东部中尺度涡的生成机制。模式结果表明,南海内区风场是南海东部中尺度涡生成的主要驱动力,且南海内区高频风场能解释约54%的南海东部中尺度涡。从西太平洋传来的信号同样有十分重要的作用,由西太区域高频风场大致能解释南海东部40%的中尺度涡。风驱动的赤道附近的海面异常信号能经过锡布图通道和民都洛海峡传播到吕宋岛西海岸,其中有部分能量会以罗斯贝波的形式往西传播。这种信号在西传的过程中会发生不稳定,可能形成孤立的涡旋。  相似文献   

3.
Intercomparison of three South China Sea circulation models   总被引:1,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

4.
According to the satellite remote sensing monthly mean sea surface temperature data from 1998 to 2002, it is shown that, the Sulu Sea is dominated by a cold eddy both in summer and winter. A coupled single-layer/two-layer model is employed here to study the summery and wintry characteristics and dynamic mechanism of the upper circulation in the Sulu Sea. According to the numerical experiments, it is found that, due to the local monsoon stress cud, the upper circulation in the Sulu Sea is dominated by a weak anticyclonic eddy in summer and a strong cyclonic eddy in winter. Once there is a large outflow via the Sibutu Passage flowing out of the Sulu Sea in summer, the upper circulation in the Sulu Sea may be dominated by a cyclonic eddy instead of the normal anti- cyclonic one. Moreover, in summer, the water exchange between the Sulu Sea and South China Sea via the Mindoro and Balabac Straits might have some effect on the separation position and strength of the northward western boundary current next to the Indo - China Peninsula in the southern South China Sea.  相似文献   

5.
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic  相似文献   

6.
邵关  王为成 《海洋测绘》2007,27(1):66-69
研究南海环流的方法很多,采用GDEM资料,运用P矢量方法,得出了南海春季、夏季局部的上层流场分布情况.通过分析并结合UCM-60超声海流计和ADCP走航式测流仪相关实测数据,初步验证了这种研究南海上层季节环流所用的数值计算方法.  相似文献   

7.
南海上层对台风响应的模拟研究   总被引:1,自引:0,他引:1  
利用中尺度海气耦合模式对2006年第1号台风Chanchu海气相互作用的模拟结果.分析了南海上层海洋对台风的热力和动力响应特征.研究发现:模拟的chanchu影响下南海SST分布与观测较为符合;与SST降低相对应的是混合层深度普遍增加,较大的海面冷却对应了较大的混合层加深;在台风作用下,海面上产生了一个气旋式环流,随着台风中心的移动而移动.流场呈现明显的不对称结构;模拟结果表明南海对台风的响应具有很明显的近惯性振荡特征.  相似文献   

8.
基于MOM模式的物理框架,妥善考虑了开边界的物理过程,改造和发展了一个区域海洋数值模式。本模式不仅可以方便地调整开边界条件,使之满足边界的特定物理条件,而且可以方便地做针对性修改,使模式更加可靠。改进后的模式具有MOM模式物理概念明确、公式便于理解、结果便于表达的全部特点,同时克服了MOM模式边界条件不完整、程序不易调整、参数难以改变的缺点。区域性模式比全球模式的计算速度快很多倍,可以成为区域性研究的有效工具。将此模式应用于南海,利用Hellerman&Rosenstein气候态风应力驱动模式10a,得到与全球模式效果相当的结果。模式模拟结果展现了南海流场的季节特征,在模式分辨率下表现出了多涡结构。根据模拟的流场计算了南海与其它海域的水交换通量。在年平均意义下,外海水通过吕宋海峡进入南海,南海水通过台湾海峡、民都洛海峡和卡里马塔海峡流出南海。各海峡水通量具有明显的季节变化。  相似文献   

9.
Mesoscale eddies(MEs) in the South China Sea(SCS) simulated by a quasi-global eddy-resolving ocean general circulation model are evaluated against satellite data during 1993–2007. The modeled ocean data show more activity than shown by the satellite data and reproduces more eddies in the SCS. A total of 345(428) cyclonic eddies(CEs) and 330(371) anti-cyclonic eddies(AEs) generated for satellite(model) data are identified during the study period, showing increase of ~24% and ~12% for the model data, respectively. Compared with eddies in satellite, the simulated eddies tend to have smaller radii, larger amplitudes, a slightly longer lifetime, faster movement and rotation speed, a slightly larger nonlinear properties(U/c) in the model. However, the spatial distribution of generated eddies appears to be inhomogeneous, with more CEs in the northern part of SCS and fewer AEs in the southern part. This is attributed to the exaggerated Kuroshio intrusion in the model because the small islands in the Luzon Strait are still not well resolved although the horizontal resolution reaches(1/10)°. The seasonal variability in the number and the amplitude of eddies generated is also investigated.  相似文献   

10.
The Circulation in the Upper and Intermediate Layers of the South China Sea   总被引:4,自引:0,他引:4  
The circulation in the basin of the South China Sea is reproduced using a four-layer numerical model. Current fields in the second (upper) and third (intermediate) layers are emphasized. Three eddies coexist in the upper layer in summer. The circulation pattern in this layer is similar to that in the first (surface) layer. In winter, a cyclonic circulation occupies the entire basin of the South China Sea in the upper layer as in the surface layer. On the other hand, the circulation pattern in the intermediate layer is fairly different from that in upper two layers especially in winter. A double-gyre pattern appears in the intermediate layer during winter. The pattern is caused by the propagation of the baroclinic Rossby wave of the second mode. This wave is excited at onset of the winter monsoon wind. Such circulation pattern well explains the observed salinity distribution in the intermediate layer. Although the double-gyre pattern in the intermediate layer is revealed even in summer in this model, it is restricted in the western part of the basin. Besides, its current speed is small compared to that in winter.  相似文献   

11.
Recent progress in studies of the South China Sea circulation   总被引:12,自引:1,他引:12  
The South China Sea (SCS) is a semi-enclosed marginal sea with deep a basin. The SCS is located at low latitudes, where the ocean circulations are driven principally by the Asia-Australia monsoon. Ocean circulation in the SCS is very complex and plays an important role in both the marine environment and climate variability. Due to the monsoon-mountain interactions the seasonal spatial pattern of the sea surface wind stress curl is very specific. These distinct patterns induce different basin-scale circulation and gyre in summer and winter, respectively. The intensified western boundary currents associated with the cyclonic and anticyclonic gyres in the SCS play important roles in the sea surface temperature variability of the basin. The mesoscale eddies in the SCS are rather active and their formation mechanisms have been described in recent studies. The water exchange through the Luzon Strait and other straits could give rise to the relation between the Pacific and the SCS. This paper reviews the research results mentioned above.  相似文献   

12.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

13.
基于2000年8月在南海调查航次得到的水文资料,首次采用广义随底坐标形式的改进POM模式对南海夏季环流进行了数值研究.用正交曲线性水平网格覆盖观测区域,在垂向上对近表海面层次采用近似z坐标,而近底层则为随底坐标.在计算海区实际地形及假设的水平均匀而垂直层化的密度分布下,实施的两个数值计算试验表明,本模式采用的垂直坐标方案比传统的σ坐标方案优越,随底坐标模式因压力梯度项在起伏地形下产生的系统计算误差将变得十分的微小.在南海2000年夏季环流的实际计算中,首先对观测资料进行了60d的诊断计算,然后在诊断已得到的动力场结果基础上,又进行了10d左右的预报运行得到半诊断结果.从计算结果来看,它依赖于参数Cvis与Cdif的选择,特别是参数Cvis,文中取值为Cvis=Cdif=008.比较诊断与半诊断两个计算过程的结果,它们在定性上较为一致,在定量上有些差别.这是因为半诊断计算的方法对密度场作适当的动力调整,使其与地形、风场等更加匹配.在大尺度环流结构不受影响的情况下,尽可能地消除了小尺度噪声,可使计算得到的流场更为清晰.2000年8月南海计算区域环流的最大特点是多涡结构,其中有些反气旋暖涡和气旋式冷涡相间分布.在越南东南海域自表层至1000m水层稳定存在着一个显著的反气旋暖涡,其中心位置在11°51'N,112°07'E(诊断计算),水平尺度约为300km.此暖涡以东存在一个气旋式冷涡,这两个冷、暖涡是研究海区夏季环流的重要环流特征之一.在计算区域东北部夏季环流以反气旋环流系统为主;在计算区域东南部夏季环流以气旋系统为主;南海夏季环流分布,明显出现西部强化特征.  相似文献   

14.
三维斜压陆架海模式的应用: 南海上混合层的季节变化   总被引:6,自引:0,他引:6  
从一个三维斜压陆架海模式的数值模拟结果来揭示南海上混合层的季节变化规律,结果表明:(1)在南海北部上混合层的厚度(即混合层的下界深度)具有明显的季节性变化,与在南海南部上混合层的变化明显不同,前者的混合强度的变化幅度远比后者的要大得多.(2)在中南半岛中部东岸外海的西边界区域内,由于经常受冷涡控制,下层冷水涌升,上层水体层化显着,使得该海区垂直混合减弱.(3)在一些气旋(反气旋)涡的边缘,混合层厚度等值线分布密集,且水平梯度较大.(4)南海上混合层的厚度分布特征与上层环流的分布格局之间存在着较好的地转调整关系.  相似文献   

15.
南海十问     
南海环流及其与世界大洋的联系带来许多重要的科学问题.本文前瞻性地提出了南海十个近期值得关注的重点研究方向,包括季风控制南海的通风问题、水团的形成和变性、海洋热盐及其质量平衡、环流能量学与海洋混合、中尺度涡、台风的海洋效应、深层海洋环流与古气候记录、南海与邻近大洋的相互作用、上升流与生态系统、以及对南海气候变化的响应.  相似文献   

16.
南海是西太平洋最大的边缘海, 由于受季风影响显著以及北部海域的黑潮入侵, 其动力环境复杂多变, 次中尺度过程丰富, 且在空间上和时间上存在多变性。文章基于高分辨率数值模式的结果, 通过对次中尺度动力参数的分析, 对比讨论了南海北部、中部、西部和南部海域4个典型子区域上层海洋次中尺度过程的空间差异、季节变化、影响深度、影响因素等问题。研究发现各区域季节性变化特征和机制有所不同: 北部海域受冬季风和黑潮入侵影响, 冬季次中尺度的混合层不稳定较强; 中部海域同样表现为“冬强夏弱”; 西部海域受夏季风影响显著, 夏季次中尺度过程更为活跃; 而南部海域主要受岛屿地形影响较大, 容易产生地形尾涡, 季节性特征不明显。统计分析表明, 次中尺度过程往往表现出强正相对涡度与高应变特征, 在表层更容易出现负位涡, 流体稳定性较差。此外, 文章从能量学角度对次中尺度过程的主要能量来源、控制因素等进行了讨论。  相似文献   

17.
Researches on the currents in the South China Sea (SCS) and the interaction between the SCS and its adjacent seas are reviewed. Overall seasonal circulation in the SCS is cyclonic in winter and anticyclonic in summer with a few stable eddies. The seasonal circulation is mostly driven by monsoon winds, and is related to water exchange between the SCS and the East China Sea through the Taiwan Strait, and between the SCS and the Kuroshio through the Luzon Strait. Seasonal characteristics of the South China Sea Warm Current in the northern SCS and the Kuroshio intrusion to the SCS are summarized in terms of the interaction between the SCS and its adjacent seas.  相似文献   

18.
利用日本气象厅"best track data"热带气旋数据、QuikSCAT(Quick Scatterometer)卫星风场数据和SCUD(Surface Currents from a Diagnostic model)表层流场数据,估算了热带气旋对南海表层流和波浪的能量输入。结果显示,由于热带气旋基本都位于南海中北部,热带气旋对表层流和波浪的能量输入也集中在南海中北部;能量输入最大的月份均在8月和11月,而在9月对总能量输入贡献最大。5~12月,热带气旋对南海表层流的能量输入为1.26GW,占风对表层流总能量输入的9.87%;热带气旋对表层波浪的能量输入为11.60GW,占风对表层波浪总能量输入的5.42%。如果只考虑10°N以北区域,则热带气旋对表层流和波浪能量输入的贡献分别达到11.29%和6.87%。  相似文献   

19.
太平洋-印度洋暖池次表层水温与南海夏季风爆发   总被引:3,自引:0,他引:3  
为探索太平洋—印度洋热带海域次表层水温对南海季风的影响,用Argo剖面浮标等实测资料,分析了太平洋—印度洋暖池次表层水温异常对南海夏季风爆发的影响。结果表明:冬季,太—印暖池次表层水温偏暖(冷)时,翌年南海夏季风爆发时间偏早(晚)是主要现象。太—印暖池次表层水温偏暖,可能引起Walker环流加强,西太平洋副热带高压偏弱,中心位置偏北偏东,南海和西太平洋上空对流层下层有气旋性距平环流出现,有利于低空西到西南气流的加强,导致南海夏季风爆发偏早;太—印暖池次表层水温偏冷,可能引起Walker环流东移并减弱,西太平洋副热带高压偏强,中心位置偏南偏西,南海和西太平洋上空对流层下层有反旋性距平环流出现,不利于低空西到西南气流的加强,导致南海夏季风爆发偏晚。结论:冬季,太—印暖池次表层水温偏暖(冷),翌年南海夏季风爆发时间偏早(晚)是主要现象。  相似文献   

20.
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS), the high-resolution SCS deep circulation is numerically investigated. The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July), a northeastsouthwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn. The sensitivity ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号