首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 67 毫秒
1.
论述了面向对象分类方法处理高光谱高空间分辨率影像的优势与流程;分析了快速漂移(Quick Shift)算法的原理,该算法在进行模式搜索时具有可控制模态选择和平衡过分割与欠分割的特点。将该算法应用于高光谱影像分割,可得到面向对象分类所需的较理想的同质影像对象。为提高影像分割的效率,提出了一种基于灰度共生矩阵的自适应核带宽确定方法,能够兼顾影像空间特征和光谱特征。最后采用最小距离分类法、支持向量机分类法与提出的分类方法进行了对比试验,实验结果表明了该方法的有效性。  相似文献   

2.
纹理特征在多光谱遥感影像分类中的应用   总被引:2,自引:3,他引:2  
提出了基于灰度共生矩阵的多光谱影像纹理分析的方法,实现了利用k-mean聚类算法对多光谱影像进行分类,比较了各种不同的分类结果。  相似文献   

3.
针对高光谱影像非线性分类问题,根据高光谱影像光谱分辨率高且光谱具有非线性的特点,结合深度学习理论,提出了一种采用降噪自动编码器(DAE)的高光谱影像分类方法。该方法结合降噪自动编码器与SOFTMAX分类器,构造深层网络分类模型;然后,利用加噪后的光谱数据,采用Dropout方法对分类模型进行预训练和微调;最后,利用训练得到的网络模型学习高光谱影像光谱的隐含特征,实现高光谱影像的分类。采用该方法对AVIRIS和PHI的高光谱影像分别进行分类对比实验,结果表明该方法能有效提高高光谱影像分类精度。  相似文献   

4.
谭熊  余旭初  秦志远  张鹏强  魏祥坡 《测绘学报》2015,44(11):1227-1234
信息向量机是一种基于贝叶斯理论的稀疏高斯过程方法,其模型训练速度快、内存耗费小、稀疏性强,具有良好的预测性能。本文从高斯过程回归模型出发,提出了一种基于信息向量机的高光谱影像分类方法,针对高斯过程分类中的非高斯噪声模型,采用假定概率滤波算法将分类问题转化为回归问题,通过最大化边缘似然函数进行模型训练,选择活动子集中的信息向量数量达到了稀疏的目的。通过ROSIS影像试验,表明了基于信息向量机的高光谱影像分类方法的优势。  相似文献   

5.
基于纹理和光谱信息的高分辨率遥感影像分类   总被引:5,自引:0,他引:5  
提出了一种基于纹理和光谱信息的高分辨率遥感影像分类方法,阐述了其基本原理,并通过试验的对比和分析,证明了利用光谱特征与纹理特征相结合进行分类比单纯运用光谱特征进行分类效果更好。  相似文献   

6.
根据高光谱遥感影像数据特点,首先利用光谱相关性进行特征选择,然后引进SVM进行高光谱遥感影像分析解译,最后利用AVIRIS影像进行试验,结果显示分类精度和时间比常规方法都有很大改善。  相似文献   

7.
王俊淑  江南  张国明  李杨  吕恒 《测绘学报》2015,44(9):1003-1013
提出了一种融合光谱和空间结构信息的高光谱遥感影像增量分类算法INC_SPEC_MPext。通过主成分分析(PCA)提取高光谱影像的若干主成分,利用数学形态学提取各主分量影像对应的形态学剖面(MP),再将所有主分量影像的形态学剖面归并联结,组成扩展的形态学剖面(MPext)。将MPext与光谱信息相结合以增加知识,最大限度地挖掘未标记样本的有用信息,优化分类器的学习能力。不断从分类器对未标记样本的预测结果中甄选置信度高的样本加入训练集,并迭代地利用扩大的训练集进行分类器构建和样本预测。以不同地表覆盖类型的AVIRIS Indian Pines和Hyperion EO-1Botswana作为测试数据,分别与基于光谱、MPext、光谱和MPext融合的分类方法进行比对。试验结果表明,在训练样本数量有限情况下,INC_SPEC_MPext算法在降低分类成本的同时,分类精度和Kappa系数都有不同程度的提高。  相似文献   

8.
提出了基于灰度-基元共生矩阵的遥感影像纹理分析的方法,分析了提取的纹理特征,实现了利用模糊C-均值算法对多光谱影像和纹理特征影像进行分类,比较和讨论了各种不同的分类结果.  相似文献   

9.
协同表示分类(collaborative representation classification,CRC)算法近年来成为高光谱遥感分类的研究热点。地物类别间区分性不高会严重影响现有CRC算法的性能。流形结构可有效地解决非线性问题,并解决高光谱遥感影像因数据冗余导致的类别间区分性低的问题。提出了一种基于切空间的高光谱遥感影像协同表示分类算法(tangent space collaborative representation classification,TCRC)和一种基于欧氏距离的自适应加权的切空间协同表示分类算法(weighted tangent space collaborative representation classification,WTCRC)。TCRC算法利用测试样本的切平面来估计区域流形,在测试样本的切空间中使用协同表示算法,寻找测试样本在各类训练样本中的最优线性表示估计,并用其最小误差来对测试样本进行分类。在此基础上,利用测试样本邻域像元、训练样本与测试样本的欧氏距离作为权矩阵来自适应调整各样本对测试样本的影响。实验采用ROSIS(reflective optics system image spectro-meter)和AVIRIS(airbone visible infrared imaging spectrometer)高光谱遥感影像对所提出算法的性能进行了评价,结果表明TCRC和WTCRC在分类效果上比CRC有明显的提升,WTCRC相较于TCRC具有更好的分类效果,具有更强鲁棒性。  相似文献   

10.
高光谱影像分类EM算法的完善   总被引:2,自引:0,他引:2  
在高光谱影像分类过程中,往往无法获取足够数量的训练样本,使得类别分布参数估值精度降低,并最终影响分类结果.EM方法为该类问题的解决提供了途径,但由于地面信息的复杂性及算法自身的原因,将其应用于高光谱影像的分类仍有许多待完善之处.文中叙述了该算法的完善策略,包括借助低通滤波器获得各参数更为合理的初值,以及如何克服噪声对该算法的影响.实验表明,经过完善的EM方法具有很强的适用性,可以获得精度更高的分类结果.  相似文献   

11.
从分析基于支持向量机和相关向量机的高光谱影像分类方法的优势和不足出发,将基于概率分类向量机的方法用于高光谱影像分类试验。在贝叶斯理论框架下,概率分类向量机为基函数权值引入截断Gauss先验概率分布,使得不同类别的基函数权值具有不同符号的先验分布,并利用EM算法进行参数推断,得到足够稀疏的概率模型,弥补了相关向量机选取错误类别的样本作为相关向量的不足,从而有效地提高了模型的分类精度和稳定性。OMIS和PHI影像分类试验表明,概率分类向量机能够很好地应用在高光谱影像分类。  相似文献   

12.
高光谱影像特征的利用率对提高其分类精度具有重要意义。为充分利用影像的特征,提出了一种特征重标定网络的高光谱影像分类方法。该方法通过全局平均池化将特征图转换为具有全局信息的实数,利用全连接层与非线性层生成能够代表各通道相对重要性的权值,进而采取加权法完成初始特征的重标定。为验证该方法的有效性,选取PaviaU和KSC两组高光谱影像数据进行实验。结果表明,提出方法总体分类精度分别达到98.38%和95.61%,可为高光谱影像提供有效的类别判定特征,有助于提高影像分类精度并获取平滑的分类结果图。  相似文献   

13.
基于相关向量机的高光谱影像分类研究   总被引:2,自引:0,他引:2  
虽然支持向量机在高光谱影像分类得到成功应用,但是它自身固有许多不足之处。相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,其核函数不需要满足Mercer条件,不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。本文从分析支持向量机用于高光谱影像分类存在的不足出发,提出了一种基于相关向量机的高光谱影像分类方法,介绍了稀疏贝叶斯分类模型,将相关向量机学习转化为最大化边缘似然函数估计问题,并采用了快速序列稀疏贝叶斯学习算法。通过PHI和OMIS影像分类实验分析表明了基于相关向量机的高光谱影像分类方法的优越性。  相似文献   

14.
为充分利用高光谱影像"图谱合一"的特性,提出了一种联合局部二值模式的高光谱影像空-谱分类方法。该方法通过局部二值模式从降维影像中提取空间纹理特征,以线性加权求和核为多核组合方式,与原始光谱特征结合构造混合核极限学习机模型,实现影像的地物分类。为了验证该方法的有效性,利用Indiana和Pavia U两组高光谱影像数据进行实验,总体分类精度分别达到99.23%和94.95%。结果表明该方法分类效果优于纯光谱分类、纯局部二值模式空间分类、GLCM空-谱分类以及3Gabor空-谱分类方法,有效地改善了高光谱影像分类结果,获得更加平滑的分类结果图。  相似文献   

15.
常规高光谱影像逐像素分类往往没有考虑空间相关性,分类结果未体现地物的空间关联和分布特征。为了在分类中充分利用空间特征,利用聚类信息并结合隐马尔可夫随机场模型讨论了高光谱遥感影像光谱-空间分类方法。首先,在不同特征提取方法(最小噪声分离、独立成分分析和主成分分析)下,使用不同聚类方法(k-均值、迭代自组织分析算法和模糊c-均值算法)借助隐马尔可夫随机场获取优化的分割图;然后,采用4连通区域标记法对分割区域标记生成图像对象,并根据支持向量机的逐像素分类结果采用多数投票法对图像对象进行分类;最后,借助凹槽窗口邻域滤波技术改进分类结果,削弱“椒盐”现象。该方法综合了监督分类和非监督分类的优势,通过聚类引入地物空间相关性信息,通过隐马尔可夫随机场引入上下文特征,较好地弥补了单纯基于光谱信息分类的不足。  相似文献   

16.
利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获取像元宏观特征。为验证该方法的有效性,选取PaviaU、Salinas和Chikusei高光谱影像数据,利用核极限学习机分类器,分别针对光谱、局部二值模式、多层级二值模式等特征开展实验。结果表明,多层级二值模式空-谱分类总体精度分别达到97.31%、98.96%和97.85%,明显优于传统光谱、3Gabor空-谱等分类方法。该方法可为高光谱影像分类提供更加有效的类别判定特征,有助于提高影像分类精度并获取更加平滑的分类结果图。  相似文献   

17.
针对高光谱影像中空间特征信息利用不足的问题,提出了一种基于纹理和光谱特征的高光谱影像信息向量机分类方法。该方法首先采用三维Gabor滤波器对高光谱影像数据立方体进行纹理特征提取,提取后的影像数据同时具有光谱和纹理特征,避免了传统纹理特征提取带来的高维特征和光谱不连续的问题;然后采用分类精度和效率都较高的信息向量机进行分类处理。通过AVIRIS高光谱影像实验,结果表明该方法不仅提高了影像的分类精度,而且还消除了分类结果图中的类别噪声现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号