首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The upper Viséan–Serpukhovian strata in the type region for the Serpukhovian Stage is an epeiric‐sea succession ca. 90 m in thickness. The predominantly Viséan Oka Group (comprising the Aleksin, Mikhailov, and Venev formations) is dominated by photozoan packstones with fluvial siliciclastic wedges developed from the west. The Lower Serpukhovian Zaborie Group is composed of the Tarusa and Gurovo formations. The latter is a new name for the shale‐dominated unit of Steshevian Substage age in the studied area. The Zaborie Group is composed of limestones and marls in its lower (Tarusa and basal Gurovo) part and black smectitic to grey palygorskitic shales in the main part of the Gurovo Formation. The Gurovo Formation is capped by a thin limestone with oncoids and a palygorskitic–calcretic palaeosol. The Upper Serpukhovian is composed of a thin (3–12 m) Protva Limestone heavily karstified during a mid‐Carboniferous lowstand. The succession shows a number of unusual sedimentary features, such as a lack of high‐energy facies, shallow‐subtidal marine sediments penetrated by Stigmaria, the inferred atidal to microtidal regime, and palustrine beds composed of saponitic marls. The succession contains many subaerial disconformities characterized by profiles ranging from undercoal solution horizons to palaeokarsts. Incised fluvial channels are reported at two stratigraphic levels to the west of the study area. The deepest incisions developed from the Kholm Disconformity (top of the Mikhailov Formation). This disconformity also exhibits the deepest palaeokarst profile and represents the major hiatus in the Oka–Zaborie succession. The new sea‐level curve presented herein shows two major cycles separated by the Kholm Unconformity at the Mikhailov/Venev boundary. The Lower Serpukhovian transgression moved the base‐level away from falling below the seafloor so that the section becomes conformable above the Forino Disconformity (lower Tarusa). The maximum deepening is interpreted to occur in the lower dark‐shale part of the Gurovo Formation. The base of the Serpukhovian Stage is defined by FADs of the conodont Lochriea ziegleri and the foraminifer Janischewskina delicata in the middle of the sequence VN2. The Aleksinian–Mikhailovian interval is provisionally correlated with the Asbian (Lower–Middle Warnantian) in Western Europe. Based on FODs of Janischewskina typica and first representatives of Climacammina, the Venevian is correlated with the Brigantian in Western Europe. The Tarusian–Protvian interval contains diverse fusulinid and conodont assemblages, but few forms suitable for international correlation. FADs of the zonal conodont species Adetognathus unicornis and Gnathodus bollandensis at several metres above the Protvian base suggest correlation of the entire Zaborie Group and may be the basal Protvian to the Pendleian. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This study is the summary analysis of bulk XRF geochemistry (233 samples from three sections) of the Oka and Zaborie groups of the type Serpukhovian succession in the Moscow Basin. The siliciclastic wedges in the limestone‐dominated Oka Group are two to three times enriched in Fe, Ti, and Zr compared to Clarke values. Bulk iron strongly correlates with magnetic susceptibility. Iron tends to form ferruginized horizons (original siderites) in finer grained siliciclastic beds associated with coal seams. These beds also tend to be enriched in Cu, Ni, Pb, Zn, and other trace metals (metal enrichment horizons or MEHs). MEHs formed in ponded conditions of coastal low‐pH marshlands vegetated by mangrove‐like lycopsid bushes. Well‐drained environments of palaeokarst formation and alkaline everglades (Akulshino palustrine event) on the other hand did not accumulate Fe and trace metals. The thin shale seam (found close to the Viséan–Serpukhovian boundary in Polotnyanyi Zavod) has unusually high Rb and Sr values, which may contain volcanigenic material useful for absolute dating. The Gurovo Formation (Steshevian Substage of the Serpukhovian) is less enriched in Fe and Ti. In the Gurovo Formation, the transition from the lower montmorillonitic shale (Glazechnya Member) to the upper palygorskitic shale (Dashkovka Member) is expressed by a five‐fold increase in background MgO values, which indicates progressive shoaling and climatic aridization. Phosphorus remains close to 0% in the Oka Group and tends to increase in the Zaborie Group, in agreement with a dramatic increase of conodont numbers and other signatures of a lower Serpukhovian marine transgression. The lower half of the Glazechnya Member exhibits fluctuating enrichment in Fe, Cu, Ni, Pb, Zn, V, Cr, and Co. These fluctuations are mostly inverse to fluctuations of Mn. This pattern has been interpreted as a signature of seafloor oxygen deficiency, where Mn‐rich samples record oxygen‐poor environments (redox barrier level with the sediment surface) and Mn‐poor samples enriched in Fe and trace metals record transitions to anoxic setting. This interval is interpreted as the Lower Serpukhovian highstand. Enrichment in Fe, Ti, and Zr of Oka siliciclastic units of Polotnyanyi Zavod indicates provenance from the ore‐rich Voronezh Land, south of the Moscow Basin. The westerly flux regarded as a possible provenance in previous palaeogeographic reconstructions is discarded for the studied sections. The Gurovo Shale is also linked to the Voronezh province, although Fe, Ti, and Zr concentrations are lower than in the Oka shales. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A detailed study of foraminiferal assemblages recorded in limestones from northern England in the Stainmore Trough and Alston Block permits their assignment to different European substages than in previous studies. Comparisons with foraminiferal assemblages, mostly from Russia, allow the biozonations to be correlated with the Viséan, Serpukhovian and Bashkirian international stages, as well as with the Russian (and Ukrainian) substages for the Serpukhovian (Tarussian, Steshevian, Protvian and Zapaltyubian). The Scar Limestone and Five Yard Limestone Members are assigned to the Tarussian and, thus, represent the lowermost part of the formal Serpukhovian Stage. This new correlation coincides closely with the first occurrence of the conodont Lochriea ziegleri from levels equivalent to the Single Post Limestone that could potentially form the revised base for the Serpukhovian. The Three Yard Limestone Member is correlated with the base of the Steshevian substage which also includes the Four Fathom Limestone Member, Great Limestone Member and Little Limestone. The base of the Protvian is considered to lie within the Crag Limestone, whereas the Rookhope Shell Band contains foraminiferal assemblages more typical of the Zapaltyubian in the Ukraine and Chernyshevkian in the Urals. Assemblages of the Upper Fell Top Limestone and Grindstone/Botany Limestones contain foraminiferal species that have been used for the recognition of the Bashkirian elsewhere. There is no other fossil group which allows the calibration of those foraminiferal assemblages, because ammonoids are virtually absent in the shallow‐water cyclothemic successions and conodonts have not been studied in detail in this region. The Mid‐Carboniferous boundary and the Voznessenian substage might be reasonably located below the Upper Fell Top Limestone. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
上扬子区下寒武统牛蹄塘组页岩是我国南方地区页岩气重要勘探层系之一。通过露头、岩心、薄片、实验测试等资料综合分析,识别了该套页岩岩相类型及相关沉积作用方式,在水体氧化还原条件演变规律分析基础上总结了其沉积演化模式。牛蹄塘组页岩共包含6类岩相:富有机质硅质页岩、含粉砂硅质页岩、粉砂质页岩、黏土质页岩、泥质钙质页岩及粉砂质钙质页岩,主要体现为5种沉积作用方式:砂质机械沉积、钙质化学沉积、硅质生物沉积、泥质絮凝沉积及底流改造沉积。从底到顶,该套页岩表现为一套水体变浅的进积型演化序列,水体还原程度减弱,有机质保存条件变差。牛蹄塘组下段沉积期,盆地相区和陆棚相区分别以硅质生物沉积和钙质化学沉积为主,主体岩相类型为硅质页岩和钙质页岩;上段沉积期,盆地相区和陆棚相区分别以泥质絮凝沉积和砂质机械沉积为主,主体岩相类型为黏土质页岩和粉砂质混合质页岩。提出的牛蹄塘组页岩岩相发育模式及沉积演化规律能为研究区优质页岩的分布预测及页岩气勘探选区评价提供理论依据。  相似文献   

5.
Shales constitute more than 60% of the world's sediments, yet while facies models for sandstones and carbonates are at a high level of sophistication, the study of shales has clearly lagged behind. In the mid-Proterozoic Newland Formation six major shale facies types, deposited in nearshore to basinal environments, are distinguished on the basis of bedding characteristics, textural features, and the proportions of silt, clay and carbonate. Textural features of these shale types are related to sedimentary environments as deduced from associated lithologies. The shales are undisturbed by bioturbation, and their textural and sedimentary characteristics reflect subaqueous growth of microbial mats, erosion and deposition by storms, deposition of flocculated vs. dispersed clays, continuous slow background sedimentation, winnowing by waves or currents, and subaerial exposure.  相似文献   

6.
Uppermost Triassic (Rhaetic) facies, as developed in the Southern Alpine region of Northern Italy, were deposited in a rapidly subsiding, fault-dissected trough (the Lombardy Basin) bounded by carbonate platforms. The main part of the Rhaetic succession consists of 10-m-scale asymmetric cycles, each divided into three parts: a lower shale portion; a central rhythmic portion consisting of repeated marl-limestone couplets, the limestone parts of which thicken upward; and an upper, wholly carbonate unit. A study of the diagenetic history of the series demonstrates that both the major asymmetric cyclicity and the limestone-marl couplets of the central rhythmic member (together constituting a ‘compound’ cyclic form) are fundamentally depositional in nature. It is suggested that this compound cyclicity resulted from the superposition of a low-frequency (approximately 100 000-year periodicity) asymmetric carbonate mud signal with a higher-frequency terrigenous mud signal. Field, petrographic, and geochemical investigations suggest that the basinal carbonate is predominantly allochthonous in origin, having been derived as relatively pure aragonitic mud from adjacent carbonate platforms. It is postulated that the asymmetric carbonate signal was linked to the ecological effects of eustatic fluctuation on platform carbonate systems. Repeated subaerial exposure of subtidal muds in shallow areas indicates that such sea-level variations occurred. A model is presented in which the basinward export of carbonate was negligible in the deepening phase, increased to a maximum during shallowing and was finally halted by the emergence of large platform flats. In contrast, the higher frequency terrigenous mud signal of the basin is thought to have been climatically modulated; fluctuations of a shorter period than those predicted by the Milankovitch theory affected hinterland precipitation and runoff. Particularly rapid subsidence and high depositional rates may have allowed the preservation of this signal.  相似文献   

7.
In the Dolomites of northernmost Italy the carbonate‐platform growth came to a standstill late in the Early Carnian (Late Triassic). The response to this shutdown of shallow‐water carbonate production in the interplatform basins is largely unknown because erosion has removed most of the soft basinal sediments, giving rise to today's scenic landscape of the Dolomites. Mapping in the central part of the Dolomites and newly available core material has recently revealed a well‐preserved succession of basinal rocks within the Heiligkreuz Hospiz Basin (ital. Ospizio di Santa Croce Basin). In this paper, the regional depositional nature of arrested carbonate platform production is reconstructed by tracing its sedimentological record across the slope and into the basin. The uppermost St. Cassian Formation, the time‐equivalent basinal rocks to the prograding carbonate platforms, is overlain by the Heiligkreuz Formation, whose basal succession was deposited in a restricted and oxygen‐depleted environment immediately post‐dating the platform demise. The succession consists mainly of mudrocks, marlstones, and peloidal packstones, with abundant low‐diversity ostracod and pelecypod fauna and early diagenetic dolomite. C and O isotope values of the basal Heiligkreuz Formation, post‐dating platform demise, average + 2·4 and ? 2·4‰, respectively, and largely overlap the isotopic composition of St. Cassian carbonates. A shift toward slightly lower δ13C values in the Heiligkreuz Formation may reflect incorporation of isotopically depleted C released during bacterial sulphate reduction in the Heiligkreuz sediments. Sedimentological, palaeobiological and geochemical indices suggest that near‐normal marine conditions persisted long after the shutdown of shallow water carbonate‐platform growth, although there are clear indications of severely reduced oxygen levels in the restricted Heiligkreuz Hospiz interplatform basin. The Early Carnian platform demise induced a distinct switch in the locus of carbonate production from the shallow‐water platform and slope to the basin floor and a decrease in the availability of dissolved oxygen in the basinal waters. It is inferred that anoxia extended at least temporarily to the top of the carbonate slope, as indicated by the onlap of normal‐marine mounds by dark marlstones of the basal Heiligkreuz Formation.  相似文献   

8.
塔东地区寒武—奥陶纪岩相古地理分析   总被引:1,自引:0,他引:1  
通过钻井资料以及露头资料的详细分析,在塔东地区寒武系—奥陶系识别出盆地相、斜坡相、台地相。根据盆地相沉积特征把塔东地区盆地相分为碳酸盐岩盆地、混积盆地、页岩-硅岩盆地三种类型。碳酸盐岩盆地相岩石类型为碳酸盐岩,混积盆地岩石类型为碳酸盐岩与页岩及硅岩互层,页岩-硅岩盆地岩石类型为泥页岩以及硅质岩。台地区发育台地边缘灰泥丘相、台缘滩相、开阔台地相等。灰泥丘主要为藻凝块岩,滩相主要为颗粒灰岩。综合塔里木盆地寒武纪—奥陶纪沉积特征提出了塔东地区碳酸盐岩沉积综合模式,并指出由台地至盆地方向,盆地由碳酸盐岩盆地向混积盆地及页岩-硅岩盆地过渡。在单井分析、露头资料分析、地震剖面分析的基础上,分析了塔东地区寒武纪—奥陶纪古地理展布。  相似文献   

9.
Shallow water platform limestones of the Chadian–Asbian Milverton Group are restricted to the north-eastern part of the Lower Carboniferous (Dinantian) Dublin Basin. Here, they are confined to two granite-cored fault blocks, the Kentstown and Balbriggan Blocks, known to have been active during the late Dinantian. Three areas of platform sedimentation are delimited (the Kentstown, Drogheda and Milverton areas), although in reality they probably formed part of a single carbonate platform. Resedimented submarine breccias and calciturbidites (Fingal Group) composed of shallow water allochems and intraclasts sourced from the platform accumulated, along with terrigenous muds, in the surrounding basinal areas. Sedimentological evidence suggests that the Kentstown and Balbriggan Blocks possessed tilt-block geometries and developed during an episode of basin-wide extensional faulting in late Chadian time. Rotation of the blocks during extension resulted in the erosion of previously deposited sequences in footwall areas and concomitant drowning of distal hangingwall sequences. Antithetic faults on the northern part of the Balbriggan Block aided the preferential subsidence of the Drogheda area and accounts for the anomously thick sequence of late Chadian platform sediments present there. Continued subsidence and/or sea-level rise in the late Chadian–early Arundian resulted in transgression of the Kentstown and Balbriggan Blocks; carbonate ramps developed on the hangingwall dip slopes and transgressed southward with time. Subsequent progradation and aggradation of shallow water sediments throughout the Arundian to Asbian led to the development of carbonate shelves. Several coarse conglomeratic intervals within the contemporaneous basinal sequences of the Fingal Group attest to periodic increases of sediment influx associated with the development of the shelves. Sedimentological processes controlled the development of the carbonate platforms on the hangingwall dip slopes of the Kentstown and Balbriggan Blocks, though periodic increases of sediment flux into the basinal areas may have been triggered by eustatic falls in sea level. In contrast, differential subsidence along the bounding faults of these blocks exerted a strong control on the margins of the late Dinantian shelves, maintaining relatively steep slopes and inhibiting the progradation of the shelves into the adjacent basins. Tectonically induced collapse and retreat of the platform margins occurred in the late Asbian–early Brigantian. Platform sediments are overlain by coarse-grained proximal basinal facies which fine upwards before passing into a thick shale sequence, indicating that by the late Brigantian carbonate production had almost stopped as the platforms were drowned.  相似文献   

10.
The paper describes a Serpukhovian Stage section, exposed along the Ural River near the village of Verkhnyaya Kardailovka (Bashkortostan). The section is uniquely complete and is proposed as a GSSP candidate for the base of the Serpukhovian. The Upper Visean and Serpukhovian beds are represented by relatively deep facies, which contain ammonoids, conodonts, ostracods, foraminifers, and other fossils. The section is described bed-by-bed and subdivided into zones based on four faunal groups. The lower boundary of the Serpukhovian is placed at the base of the Lochriea ziegleri conodont zone. The stratigraphic units are correlated with synchronous beds of the East European Platform, the Donets Basin, Western Europe, Central Asia, and North America.  相似文献   

11.
Siwa oasis is located in the extreme western part of the Egyptian western desert. There are several archaeological sites in the oasis; the most distinct ones are Alexander the Great temple at Aghormi hill and the Gebel El Mota tomb excavations. They have suffered due to deterioration and cracks of different kinds and some parts are getting worse as rock falls occur. From field inspection and lab analysis, it is clear that lithology plays an important role on the extent of damage. Alexander the Great temple was built over the northern edge of Aghormi hill, which consists of two distinct beds—an upper limestone bed and a lower shale one. From field survey and laboratory analysis, the shale is considered as a high expanded bed and weak in its bearing capacity, as its clay content (mainly smectite) experienced swelling due to wetting from the ground water spring underneath. Consequently, the upper limestone bed suffered from map cracking associated with rock falls due to the differential settlement of the swelled lower shale one. The temple was threatened by slope instability and had experienced many cracks. At Gabal El Mota tomb excavations, it was noticed that a comparison of tombs of the same opening size revealed that those that excavated on shale beds had cracked much more than those that excavated on limestone. This may be attributed to the low bearing capacity of excavated shale walls. The remedial measures suggested to overcome the stability problems on these archaeological sites are grouting or construction of retaining walls.  相似文献   

12.
A section through the late Archean Mt. McRae Shale comprising, in ascending order, a lower shale interval (LSI), a banded iron formation (BIF), an upper shale (USI) and a carbonate (C1) has been analyzed for total Fe and Al contents and authigenic Fe present as carbonate, oxide, sulfide and silicate phases. The authigenic mineralogy is controlled by the episodic addition of Fe from hydrothermal activity and removal of Fe by sulfide, relative to rates of clastic sedimentation. The LSI and BIF have mean FeT/Al values of 2 and 5, respectively, that record iron enrichment from hydrothermal sources. Iron was precipitated primarily as siderite accompanied by Fe-rich chlorite from anoxic bottom waters rich in dissolved Fe. Pyrite formation was probably limited by the availability of sulfate, which was present at low concentrations and became rapidly depleted. The USI has generally lower FeT/Al values (0.6-1.3), similar to those found in Paleozoic shales, with the exception of one interval where enrichment may reflect either a weak hydrothermal source or the operation of an iron shuttle. This interval contains authigenic Fe predominantly as pyrite, where high values for DOP (>0.8) indicate the existence of a water column that became rich in dissolved sulfide (euxinic) when sulfate concentrations increased due to a transient or secular increase in ocean/atmosphere oxygenation. High concentrations of dissolved sulfide maintained low concentrations of dissolved Fe, which allowed only minor amounts of Fe to be precipitated as carbonates and silicates. The USI also has elevated concentrations of organic matter that most probably reflect increased productivity and likely limited euxinia to midportions of the water column on the basin margin. The carbonate C1 represents a basinal chemistry where sulfide has been removed and FeT/Al values are ∼1 indicating that hydrothermal activity again produced dissolved Fe-rich bottom waters. Detailed iron speciation of the Mt. McRae Shale can be used to recognize spatial and temporal variations in iron and sulfur inputs to the late Archean Hamersley Basin, just prior to the Paleoproterozoic rise in atmospheric oxygenation, and our refined methods have relevance to all Fe-rich deposits.  相似文献   

13.
《Sedimentology》2018,65(4):1246-1276
Submarine mass‐transport deposits represent important stratigraphic heterogeneities within slope and basinal sedimentary successions. A poor understanding of how their distribution and internal architecture affect the fluid flow migration pathway may lead to unexpected compartmentalization issues in reservoir analysis. Studies of modern carbonate mass‐transport deposits mainly focus on large seismic‐scale slope failures; however, the near‐platform basinal depositional environment often hosts mass‐transport deposits of various dimensions. The small‐scale and meso‐scale (metres to several tens of metres) carbonate mass‐transport deposits play a considerable role in distribution of sediment and therefore have an impact on the heterogeneity of the succession. In order to further constrain the geometry and internal architecture of mass‐transport deposits developed in near‐slope basinal carbonates, a structural and sedimentological analysis of sub‐seismic‐scale mass‐transport deposits has been undertaken on the eastern margin of the Apulian carbonate platform in the Gargano Promontory, south‐east Italy. These mass‐transport deposits, that locally comprise a large proportion (50 to 60%) of the base of slope to basinal sediments of the Cretaceous Maiolica Formation, typically display a vertically bipartite character, including debrites and slump deposits of varying volume ratios. A range of brittle and ductile deformation styles developed within distinct bed packages, together with the presence of both chert clasts, folded chert layers and spherical chert nodules, suggest that sediments were at different stages of lithification prior to downslope movement associated with mass‐transport deposits. This study helps elucidate the emplacement processes, frequency and character of subseismic‐scale mass‐transport deposits within the basinal carbonate environment, and thereby reduces the uncertainties in the characterization of subsurface carbonate geofluid reservoirs.  相似文献   

14.
Barremian-Lower Aptian platform carbonates (“Urgonian limestones”) of the northern margin of the Istanbul zone extend from Zonguldak to the Kurucasile area along the Black Sea coast. New stratigraphic data on the “Inpiri” Formation of the Inpiri-Kurucasile area are based on the identification of calcareous algae, foraminifera, and rudists. They show that this lithostratigraphic unit is stratigraphically and lithologically equivalent to the Ökü?medere Formation from Zonguldak. Some of the biostratigraphic markers are reported for the first time in Anatolia. Foraminifera are represented by several forms with a significant biostratigraphic potential used to distinguish the Barremian from the lower Aptian. Lower Aptian beds also yield relatively advanced caprinid rudists.The Ökü?medere Formation is relatively thin, terrigeneous-rich, and rudist-free or rudist-poor in the Kurucasile sector, and thick, terrigeneous-poor, and rudist-rich from Amasra to Zonguldak, with a set of marker beds including either charophytes or Palorbitolina and capped by a coral unit underlying ammonite bearing marls. Terrigeneous-rich carbonates from the eastern sector are interpreted as marginal marine coastal, infralittoral environments and grade distally, northward, to marly basinal sediments. By contrast “Urgonian type” limestones from the Zonguldak-Amasra region possess a wide extent and no transition to coastal or basinal sediments has been observed. A transition from a typical platform westward to a mixed siliciclastic-carbonate ramp eastward was controlled by both the nature of the adjacent exposed area and tectonic factors affecting the overall continental margin that is a northward downwarping. The exposed area was flanked southward by a belt of coastal siliciclastics grading southward and eastward to deep water sediments of the Ulus basin. In mid-Bedoulian time, carbonate platform demise from the western region was drowned below deeper marly sediments whereas the eastern siliscilastic-carbonate ramp was buried below coastal clastics.  相似文献   

15.
Logging of 55 recent boreholes, together with remapping, has resulted in a fundamental reassessment of the stratigraphy and sedimentology of the Dinantian Kingscourt Outlier. Despite the present isolated position of the outlier within the Longford-Down Massif, the Kingscourt rocks are an integral part of the Dublin Basin succession. The newly defined Ardagh Platform marks the most northerly limit to basinal sedimentation in the Dinantian Dublin Basin. The Courceyan is a typical but thinner, north Dublin Basin succession with two new formal units: the Rockfield Sandstone Member and the Kilbride Formation. The latter, a coarse-grained, well washed limestone of latest Courceyan to early Chadian (late Tournaisian) age is the shallow water equivalent of the Feltrim Formation (Waulsortian facies), which is absent in the outlier. The Courceyan interval in the north of the outlier is markedly attenuated. In the succeeding Chadian-Brigantian interval basinal facies predominate in the south, but on the Ardagh Platform an almost complete coeval Viséan shallow water sequence is found. A new platform unit (Deer Park Formation) of latest Asbian to Brigantian age is defined in the Ardagh area. The Dee Member (Chadian) is newly defined for the lower part of the basinal Tober Colleen Formation and the Altmush Shale Member is formally defined for the upper part of the Loughshinny Formation. Two major structures dominate the Kingscourt Outlier: the NE-SW trending Moynalty Syncline in the south and the N-S trending Kingscourt Fault. Both are Hercynian structures, but probably represent reactivated Caledonide basement-controlled structures. Dinantian syn-depositional faulting is indicated in both the Courceyan (‘Kingscourt Sag’) and Chadian-Asbian. The latter period of faulting in the Ardagh area separates platform facies in the north from basinal facies to the south. In the late Asbian, platform facies with carbonate build-ups prograded south into the basin as far south as Nobber, but in the latest Asbian to Brigantian, basinal facies extended northwards over the collapsed platform margin.  相似文献   

16.
The early Carboniferous series of the Adarouch area (northeast central Morocco) are subdivided into three sedimentological and biostratigraphical units. The first unit, which belongs to the Late Visean zones V3bβ and V3bγ, was deposited on shallow carbonate platforms. The second unit belongs to the Late Visean zone, V3c, and incudes terrigenous deposits, such as turbidites, shales and olistostromes. The third unit belongs to the Serpukhovian stage and consists of sandstones and limestones. A new biostratigraphical analysis, which is based on foraminiferal, algae and pseudoalgae, allows an accurate dating of the units. The deposits of the zones V3bβ and V3bγ contain characteristic calcareous microfossils, such as Stacheoides sp., Pseudoendothyra sp. and Ungdarella uralica. The V3c zone (300–400 m) is shown in two oolitic beds of the Mouarhaz and Akerchi Formations, respectively, with Janischewskina sp. and Asteroarchaediscus sp. The Serpukhovian stage is characterised by the disappearance of the algae Koninckopora and the appearance of the brachiopod Titanaria. The new data from the Adarouch area confirm the Moroccan biostratigraphical scale of the Moroccan meseta.  相似文献   

17.
The Dinantian Edale Basin is located to the north of the Derbyshire carbonate platform and underlies the Upper Carboniferous of the central Pennines. The Edale Basin was thought to be part of a large basin which extended from the Derbyshire carbonate platform to the Askrigg Block. The presence of aggregate grains and ooids in the Alport Borehole suggests that a carbonate platform, possibly located on the Holme structural high, was present underneath the central Pennines. This platform is called the Holme Platform. The Arundian to early Asbian section of the Alport Borehole represents deposition of resedimented shallow-water carbonates with occasional bioturbated periplatform carbonates and basinal shales on the middle part of a carbonate ramp. Volcaniclastic sediments may have been derived from a volcanic centre within the Edale Basin. A change in sedimentation during the mid-Asbian to the deposition of basinal shales and distal carbonate turbidites is attributed to starvation of the basin. This may have been caused by a combination of the development of accretionary rimmed carbonate shelves and the repeated emergence of shelf carbonates deposited on surrounding carbonate platforms. The late Asbian/early Brigantian section of the Edale Borehole is interpreted as a distal equivalent of the ‘Beach Beds’ which outcrop at the north margin of the Derbyshire carbonate platform. The ‘Beach Beds’ represent bioclastic turbidites derived from the Derbyshire carbonate platform. Throughout the Brigantian, sedimentation in the Edale Basin was dominated by the deposition of distal carbonate turbidites and basinal shales. Variation of dip through the Alport Borehole indicates the common occurrence of slumps throughout the sequence and the presence of either an angular unconformity or a fault within the early Brigantian section.  相似文献   

18.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The Kuh-e-Surmeh carbonate-hosted zinc-lead deposit, located within the Simply Folded Belt of the Zagros Mountains in southwestern Iran, is an orogen-related Mississippi Valley type deposit originally formed in the foreland Thrust Belt of the Zagros Mountains. Structural and textural observations indicate that ore deposition took place as open-space fillings in brecciated carbonate rock and as internal sediments consisting of fine-grained ore minerals interlayered with carbonates. The preferred genetic model for the concentration of the ore metals is that of dewatering of the Zard-Kuh basin due to regional tectonic compaction tectonism and expulsion of basin-derived fluids into the highly porous and brecciated dolomitized rocks of the Dalan Formation. The metals precipitated from dense basinal brine (15 wt% equiv. NaCl) at low temperatures (less than 200 °C), typically within strata of a Late Paleozoic carbonate platform. Received: 21 July 1998 / Accepted: 20 August 1999  相似文献   

20.
湘西-黔东地区早寒武世沉积序列及铅锌成矿制约   总被引:1,自引:1,他引:1  
湘西-黔东地区下寒武统发育完整,是一套从黑色岩系到碳酸盐岩的沉积序列,代表早寒武世复杂的古地理变迁。纵向上,下寒武统组成一个二级层序,可以进一步划分为5个三级层序,构成总体向上变浅的沉积相序列,同时反映了缓坡型碳酸盐岩台地的生长发育过程,铅锌矿赋存于第四层序高水位体系域中;空间上从北西至南东发育从局限台地、浅滩和微生物(藻)丘相、陆棚相等沉积。岩相古地理对层控铅锌矿具有明显的控制作用,主要分布于台地边缘藻丘和浅滩相与局限台地潮下过渡部位。研究表明牛蹄塘组黑色碳质页岩是铅锌矿源层,清虚洞组灰岩是主要容矿层,其中浊积岩、藻丘体、砾(粒)屑灰岩构成一个完整的铅锌控矿序列。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号