首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
殷永红  倪允琪 《气象学报》2001,59(4):459-471
采用 NCEP/NCAR的 1 979~ 1 998年逐月平均的海表温度及 1 0 0 0 h Pa风场资料 ,进行滤波和均方差计算 ,得到了热带太平洋、印度洋、大西洋海表温度 (SST)和风场的年际变化特征。用旋转主分量 (RPC)方法和投影法对热带三大洋海表温度距平 (SSTA)进行分析 ,得到了各大洋 SSTA演变的主要时空特征和相应的距平风场特征 ;并用相关分析研究热带三大洋与ENSO相关的特征 ,得到三大洋间的同期相关关系为 :印度洋 SSTA与赤道东太平洋 SSTA成正相关 ,而赤道东大西洋 SSTA与赤道东太平洋 SSTA成弱的负相关 ;赤道印度洋在落后于赤道东太平洋 3个月左右时正相关达到最大 ,赤道大西洋在超前于赤道东太平洋 6个月左右时负相关达到最大 ;热带印度洋和大西洋与 ENSO相关的分量对各自大洋海表温度年际变化的方差贡献数值相近 ,最大在 40 %以上 ,平均解释方差分别为 1 4%和 1 2 %。  相似文献   

2.
Utilizing the NCEP/NCAR reanalysis monthly datasets,and based on the filter and standard deviation calculation,the interannual variability of sea surface temperature (SST) and 1000 hPa wind field for the tropical Pacific,Indian and Atlantic Oceans is investigated for the past 20 years (1979-1998).The characters of space-time evolution in SST anomalies (SSTA) for each ocean and corresponding wind anomaly field are acquired by using rotated principal component (RPC) and linear regression analysis methods.Using the method of correlation analysis.the characters of three tropical oceans correlated with ENSO are investigated.The contemporary correlation between the SSTA in the Indian Ocean and in the equatorial eastern Pacific is positive,and there is a weak negative correlation between the SSTA in the equatorial east Atlantic Ocean and in the equatorial eastern Pacific.The lead-lag correlation analysis indicates that the SSTA in the equatorial Indian Ocean lags the dominant Pacific ENSO mode by 3 months,and the SSTA in the equatorial Atlantic Ocean leads ENSO mode by 6 months.The ENSO-correlated components in tropical Indian Ocean and tropical Atlantic Ocean display much the same amount of total variance in each ocean,i.e..14% in the Indian Ocean and 12% in the Atlantic Ocean and the maximums are all above 40%.  相似文献   

3.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

4.
ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM   总被引:1,自引:1,他引:0  
The teleconnections of the El Niño/Southern Oscillation (ENSO) in future climate projections are investigated using results of the coupled climate model ECHAM5/MPI-OM. For this, the IPCC SRES scenario A1B and a quadrupled CO2 simulation are considered. It is found that changes of the mean state in the tropical Pacific are likely to condition ENSO teleconnections in the Pacific North America (PNA) region and in the North Atlantic European (NAE) region. With increasing greenhouse gas emissions the changes of the mean states in the tropical and sub-tropical Pacific are El Niño-like in this particular model. Sea surface temperatures in the tropical Pacific are increased predominantly in its eastern part and redistribute the precipitation further eastward. The dynamical response of the atmosphere is such that the equatorial east–west (Walker) circulation and the eastern Pacific inverse Hadley circulation are decreased. Over the subtropical East Pacific and North Atlantic the 200 hPa westerly wind is substantially increased. Composite maps of different climate parameters for positive and negative ENSO events are used to reveal changes of the ENSO teleconnections. Mean sea level pressure and upper tropospheric zonal winds indicate an eastward shift of the well-known teleconnection patterns in the PNA region and an increasing North Atlantic oscillation (NAO) like response over the NAE region. Surface temperature and precipitation underline this effect, particularly over the North Pacific and the central North Atlantic. Moreover, in the NAE region the 200 hPa westerly wind is increasingly related to the stationary wave activity. Here the stationary waves appear NAO-like.  相似文献   

5.
东亚和西北太平洋地区气候的准10年尺度振荡及其可能机制   总被引:14,自引:1,他引:13  
本文基于对气候、大气环流和海表水温的资料分析以及简单的理想化海气耦合模式的分析,研究了东亚和西北太平洋地区气候的准10年振荡及其可能机制。研究表明,东亚和西北太平洋地区的气候(降水和地面气温等)和大气环流(环流指数和副高活动等)的演变都有明显的准10年振荡;同赤道太平洋SSTA主要为ENSO循环不同,西北太平洋SSTA主要表现为准10年尺度的振荡,且同气候和大气环流的准10年变化密切相关;中纬度海-气相互作用可产生一种甚低频耦合波(10年左右周期),它可能是海气系统准10年振荡的重要机制之一  相似文献   

6.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

7.
热带太平洋西风异常对ENSO事件发生的作用   总被引:6,自引:5,他引:6  
傅云飞  黄荣辉 《大气科学》1996,20(6):641-654
本文从观测资料对80年代两次ENSO事件产生过程中,热带太平洋西风异常及其对赤道中、东太平洋表层海温增暖的作用进行了分析和比较。分析结果表明:在这两次ENSO事件的产生过程中,赤道西太平洋上空均有较大的西风异常,并且它由赤道西太平洋向赤道中、东太平洋传播,随着西风异常从西向东传播,赤道中、东太平洋的表层相继增温。分析还表明,1982/1983年ENSO事件发生过程中,热带太平洋西风异常的强度要比1986/1987年热带太平洋西风异常强得多,这使得1982/1983 ENSO事件的强度比1986/1987_ENSO事件强得多。为了说明热带西太平洋西风异常对赤道中、东太平洋ENSO事件发生的作用,本文还利用IAP太平洋环流模式对西风异常在ENSO事件产生过程中的作用进行了数值模拟。模拟的结果说明了热带太平洋的西风异常对赤道太平洋暖水的向东传播和赤道中、东太平洋的增温起了很重要作用,这与观测事实分析一致。  相似文献   

8.
Summary Tropical north Africa depends on rain-fed agriculture as the main economic driver. The variability of climate-sensitive resources is investigated with a goal to develop statistical long-lead prediction models with reasonable skill. Climate data from NCEP is analysed in conjunction with agricultural and economic production in various sectors, in addition to the traditional climatic indices: temperature and rainfall. Key predictors for statistical models include the lower-level zonal wind over the Atlantic and Pacific Oceans. These exhibit a ‘memory’ that is consistent with sea surface temperatures (SST) through equatorial upwelling dynamics. Kinematic predictors outperform SST in hindcast fit by an average 33% with respect to various tropical north African resource indices. A multi-decadal oscillation induces long-term trends in rainfall that contribute to apparently skilful forecasts based on the interaction of Pacific ENSO and the Atlantic zonal overturning circulation. The skill of statistical forecasts is lower when the drying trend is removed.  相似文献   

9.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

10.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

11.
ENSO 循环各阶段东亚夏季风特征的诊断研究   总被引:2,自引:6,他引:2  
陈月娟  简俊  周任君 《高原气象》2002,21(5):441-446
利用NCEP/NCAR再分析资料和NCAR海温资料及中国测站地温资料,对ENSO循环不同阶段东亚夏季风强弱变化进行了分析.并从此期间的海陆热力差异和季风低压变化来探讨海温异常对东亚夏季风的影响,结果表明:东亚夏季风指数有明显的年际变化和年代际变化,且与赤道东太平洋SST有较好的负相关关系,其中又以与三个月前的海温变化关系最好.在Ninol 2区为冷、暖水之后的三个月中,冷水期对应的东亚夏季风指数大于暖水期对应的东亚夏季风指数,东亚夏季风比暖水期强。赤道东太平洋SST变化期间亚洲大陆的地面温度和地面气压也有明显变化,这是引起ENSO不同阶段东亚夏季风变化的主要原因。  相似文献   

12.
Observations indicate that the Atlantic zonal mode influences El Ni?o Southern Oscillation (ENSO) in the Pacific, as already suggested in previous studies. Here we demonstrate for the first time using partial coupled experiments that the Atlantic zonal mode indeed influences ENSO. The partial coupling experiments are performed by forcing the coupled general circulation model (ECHAM5/MPI-OM) with observed sea surface temperature (SST) in the Tropical Atlantic, but with full air-sea coupling allowed in the Pacific and Indian Ocean. The ensemble mean of a five member simulation reproduces the observational results well. Analysis of observations, reanalysis, and coupled model simulations all indicate the following mechanism: SST anomalies associated with the Atlantic zonal mode affect the Walker Circulation, driving westward wind anomalies over the equatorial Pacific during boreal summer. The wind stress anomalies increase the east-west thermocline slope and enhance the SST gradient across the Pacific; the Bjerknes positive feedback acts to amplify these anomalies favouring the development of a La Ni?a-like anomalies. The same mechanisms act for the cold phase of Atlantic zonal mode, but with opposite sign. In contrast to previous studies, the model shows that the influence on ENSO exists before 1970. Furthermore, no significant influence of the Tropical Atlantic on the Indian Monsoon precipitation is found in observation or model.  相似文献   

13.
Annually averaged global mean land air temperature and sea surface temperature (SST) combined, and global mean SST alone share similar fluctuations. We examine contributions by modes of SST variability in the global mean SST based on a new version (version 3) of global sea-ice and SST (GISST3). Besides a trend mode, the dominant modes are El Niño-Southern Oscillation (ENSO), interhemispheric oscillation, and North Pacific oscillation. Statistics over the period of 1880–1997 show that excluding a warming trend the fluctuation on interannual (IA) and decadal-interdecadal (DID) time scales is dominated by IA ENSO and DID ENSO-like variability. However, the contribution by IA ENSO cycles experiences significant fluctuations, and there appears to be strong modulations by ENSO-like variability on DID or longer time scales: during several decade-long periods, when DID ENSO-like variability raises the temperature in the equatorial eastern Pacific, the contribution by IA ENSO cycles weakens to an insignificant level. The latest example of such modulation is the period since about 1980; despite the exceptional strength of El Niño events, the contribution by IA ENSO cycles weakens, suggesting that the exceptional strength is a consequence of superposition of IA El Niño events, a warming phase of DID ENSO-like variability, and possibly an ENSO-like warming trend.  相似文献   

14.
热带太平洋SSWA特征及其在ENSO循环中的演变   总被引:1,自引:0,他引:1  
张丰启  何金海 《气象科学》1998,18(3):222-230
应用1970年1月至1989年12月热带太平洋SSTA(海面温度距乎)和SSWA(海面风距平)资料,分析发现:热带太平洋SSWA的主要空间特征和海气耦合主要空间型均表现为ElNino(LaNina)盛期的SSWA分布。热带太平洋SS-WA的主要传播特征与ENSO循环过程中SSWA的演变是一致的,表现为赤道中东太平洋海面阻平东、西风的转换和赤道东太平洋SSWA辐散、辐合的转换。赤道中东太平洋距平东风(西风)向赤道距平西风(东风)的转换伴随着中西太平洋副热带SSWA偶极子气旋(反气旋)的生消,偶极子气旋(及气旋)表现为明显的北半球强于南半球。  相似文献   

15.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

16.
利用月平均的HadISST海表温度、NCEP再分析资料、OAFlux海表面热通量及相关物理量资料、NCAR/NOAA云量场资料,分析了热带太平洋海表热通量的年际特征,并且进一步分析了传统El Ni?o和El Ni?o Modoki事件中湍流热通量的异常演变特征以及影响因子。在热带太平洋上,净热通量的年际变化最大振幅出现在赤道太平洋上,且主要取决于潜热通量和短波辐射通量的变化。本文还利用两类ENSO事件旺盛期海温指数对不同时期海面热通量场的偏回归分析,考察了热带太平洋海表面热通量与两类ENSO事件中海温的联系。两类海温指数对各时期热带太平洋净热通量的回归均表现为赤道太平洋上存在显著的负异常,在Ni?o3指数偏回归下的负异常范围和强度都较El Ni?o Modoki指数回归的要大,且更偏于赤道东太平洋,而旺盛期海温对同期赤道东太平洋上湍流热通量的影响最大。  相似文献   

17.
全球增暖对ENSO影响的数值模拟研究   总被引:4,自引:0,他引:4  
胡博  李维京  陈鲜艳 《大气科学》2007,31(2):214-221
利用日本东京大学气候系统研究所、日本环境研究所和日本地球环境研究中心联合开发的海气耦合模式MIROC3.2,研究了全球变暖对ENSO年际变率的影响。该模式较好地模拟了ENSO循环的不同阶段表层和次表层海水温度变化,海表温度最大振幅出现在120°W以东,与观测一致,表明模式可以较好反映热带地区大气、海洋的动力、热力特征。研究还比较了控制试验和CO2浓度年增长1%的瞬时试验,结果表明,在全球变暖的大环境下ENSO事件发生频率没有显著变化,但ENSO事件强度增大,年际变率变大;热带太平洋呈现整体增暖趋势,表层温度尤其是热带中太平洋地区温度升高显著。敏感性分析表明,年际ENSO变率的振幅增大的主要贡献来自于海洋。海水增温导致热带太平洋海温垂直梯度增大,在热带西太平洋海温垂直温度梯度变化最为明显;次表层海温对单位大气风应力变化的响应大于表层海温响应。当这种响应与热带太平洋赤道地区径向温度梯度变化的共同作用导致温室效应下ENSO振幅增大。  相似文献   

18.
The singular value decomposition (SVD) of air-sea interaction in the tropical western,central,and eastern Pacific,and the tropical Atlantic and Indian Oceans has been conducted by using theNCEP/NCAR 40-year reanalysis 1000 hPa monthly wind field and COADS monthly sea surfacetemperature (SST).Comparisons of the results suggest that these areas can be divided into threetypes from the viewpoint of air-sea interaction:tropical central-eastern Pacific belongs to monistictype,in which ENSO is the sole important process;tropical western Pacific and Indian Oceansbelong to dualistic type,in which in addition to ENSO.there should be an another importantprocess;tropical Atlantic Ocean belongs to pluralistic type,in which the process is complicatedand the ENSO cycle is not evident.  相似文献   

19.
The singular value decomposition (SVD) of air-sea interaction in the tropical western,central,and eastern Pacific,and the tropical Atlantic and Indian Oceans has been conducted by using the NCEP/NCAR 40-year reanalysis 1000 hPa monthly wind field and COADS monthly sea surface temperature (SST).Comparisons of the results suggest that these areas can be divided into three types from the viewpoint of air-sea interaction:tropical central-eastern Pacific belongs to monistic type,in which ENSO is the sole important process;tropical western Pacific and Indian Oceans belong to dualistic type,in which in addition to ENSO.there should be an another important process;tropical Atlantic Ocean belongs to pluralistic type,in which the process is complicated and the ENSO cycle is not evident.  相似文献   

20.
热带海洋海气相互作用的区域差异   总被引:7,自引:3,他引:7  
用NCEP/NCAR40年再分析1000hPa月平均风场资料及COADS月平均海表温度资料,对热带西、中、东太平洋、热带大西洋和印度洋五个区域的海气异常作了奇异值分解(SVD)。比较区域间SVD的主要参数和分析第一奇异向量及其时间系数表明,热带海气相互作用可区分为三类;热带东、中太平洋属‘单元型’,ENSO是唯一重要的过程,热带西太平洋、印度洋属‘二元型’,除了ENSO过程,还应存在唯一重要的过程;热带西太平洋,印度洋属‘二元型’,除了ENSO过程还应存在另一重要过程,热带大西洋属‘多元型’,其构成复杂,ENSO循环则不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号